Mitoquinone (MitoQ) Inhibits Platelet Activation Steps by Reducing ROS Levels
Platelet activation plays a key role in cardiovascular diseases. The generation of mitochondrial reactive oxygen species (ROS) has been described as a critical step required for platelet activation. For this reason, it is necessary to find new molecules with antiplatelet activity and identify their...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-08-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/1422-0067/21/17/6192 |
Summary: | Platelet activation plays a key role in cardiovascular diseases. The generation of mitochondrial reactive oxygen species (ROS) has been described as a critical step required for platelet activation. For this reason, it is necessary to find new molecules with antiplatelet activity and identify their mechanisms of action. Mitoquinone (MitoQ) is a mitochondria-targeted antioxidant that reduces mitochondrial overproduction of ROS. In this work, the antiplatelet effect of MitoQ through platelet adhesion and spreading, secretion, and aggregation was evaluated. Thus MitoQ, in a non-toxic effect, decreased platelet adhesion and spreading on collagen surface, and expression of P-selectin and CD63, and inhibited platelet aggregation induced by collagen, convulxin, thrombin receptor activator peptide-6 (TRAP-6), and phorbol 12-myristate 13-acetate (PMA). As an antiplatelet mechanism, we showed that MitoQ produced mitochondrial depolarization and decreased ATP secretion. Additionally, in platelets stimulated with antimycin A and collagen MitoQ significantly decreased ROS production. Our findings showed, for the first time, an antiplatelet effect of MitoQ that is probably associated with its mitochondrial antioxidant effect. |
---|---|
ISSN: | 1661-6596 1422-0067 |