Systems biology and metabolic engineering of Arthrospira cell factories

Arthrospira are attractive candidates to serve as cell factories for production of many valuable compounds useful for food, feed, fuel and pharmaceutical industries. In connection with the development of sustainable bioprocessing, it is a challenge to design and develop efficient Arthrospira cell fa...

Full description

Bibliographic Details
Main Authors: Amornpan Klanchui, Tayvich Vorapreeda, Wanwipa Vongsangnak, Chiraphan Kannapho, Supapon Cheevadhanarak, Asawin Meechai
Format: Article
Language:English
Published: Elsevier 2012-10-01
Series:Computational and Structural Biotechnology Journal
Online Access:http://journals.sfu.ca/rncsb/index.php/csbj/article/view/csbj.201210015
Description
Summary:Arthrospira are attractive candidates to serve as cell factories for production of many valuable compounds useful for food, feed, fuel and pharmaceutical industries. In connection with the development of sustainable bioprocessing, it is a challenge to design and develop efficient Arthrospira cell factories which can certify effective conversion from the raw materials (i.e. CO2 and sun light) into desired products. With the current availability of the genome sequences and metabolic models of Arthrospira, the development of Arthrospira factories can now be accelerated by means of systems biology and the metabolic engineering approach. Here, we review recent research involving the use of Arthrospira cell factories for industrial applications, as well as the exploitation of systems biology and the metabolic engineering approach for studying Arthrospira. The current status of genomics and proteomics through the development of the genome-scale metabolic model of Arthrospira, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies are discussed. At the end, the perspective and future direction on Arthrospira cell factories for industrial biotechnology are presented
ISSN:2001-0370