Summary: | In order to reduce power failures caused by lead sealing defects, it is necessary to carry out nondestructive testing of cable lead sealings. However, previous studies have focused on the detection of surface and near-surface defects of lead sealings. Thus, an improved pulsed eddy current detection (IPECD) method is introduced to detect the deep defects of cable lead sealings (with depths ranging from 6 to 12 mm), and the frequency range selection principle and the optimization method of initial phase angles of different frequency components of IPECD, used to maximize the peak value of the excitation signal, are first explained in detail. Then, the detection sensitivities of the deep defects before and after the optimization are compared and analyzed based on a simulation. Finally, using the IPECD method, experiments are conducted to study the effects of the defect depth on features of the lift-off point of intersection and the zero-crossing time, enhancing the foundation for the prediction or rapid detection of the depth of lead sealing defects.
|