A Machine Vision Rapid Method to Determine the Ripeness Degree of Olive Lots

The degree of olive maturation is a very important factor to consider at harvest time, as it influences the organoleptic quality of the final product, for both oil and table use. The Jaén index, evaluated by measuring the average coloring of olive fruits (peel and pulp), is currently considered to b...

Full description

Bibliographic Details
Main Authors: Luciano Ortenzi, Simone Figorilli, Corrado Costa, Federico Pallottino, Simona Violino, Mauro Pagano, Giancarlo Imperi, Rossella Manganiello, Barbara Lanza, Francesca Antonucci
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/9/2940
_version_ 1797536714607034368
author Luciano Ortenzi
Simone Figorilli
Corrado Costa
Federico Pallottino
Simona Violino
Mauro Pagano
Giancarlo Imperi
Rossella Manganiello
Barbara Lanza
Francesca Antonucci
author_facet Luciano Ortenzi
Simone Figorilli
Corrado Costa
Federico Pallottino
Simona Violino
Mauro Pagano
Giancarlo Imperi
Rossella Manganiello
Barbara Lanza
Francesca Antonucci
author_sort Luciano Ortenzi
collection DOAJ
description The degree of olive maturation is a very important factor to consider at harvest time, as it influences the organoleptic quality of the final product, for both oil and table use. The Jaén index, evaluated by measuring the average coloring of olive fruits (peel and pulp), is currently considered to be one of the most indicative methods to determine the olive ripening stage, but it is a slow assay and its results are not objective. The aim of this work is to identify the ripeness degree of olive lots through a real-time, repeatable, and objective machine vision method, which uses RGB image analysis based on a k-nearest neighbors classification algorithm. To overcome different lighting scenarios, pictures were subjected to an automatic colorimetric calibration method—an advanced 3D algorithm using known values. To check the performance of the automatic machine vision method, a comparison was made with two visual operator image evaluations. For 10 images, the number of black, green, and purple olives was also visually evaluated by these two operators. The accuracy of the method was 60%. The system could be easily implemented in a specific mobile app developed for the automatic assessment of olive ripeness directly in the field, for advanced georeferenced data analysis.
first_indexed 2024-03-10T12:04:45Z
format Article
id doaj.art-6ddbbf4aec5a44a7b9e9ddabe582a1be
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-10T12:04:45Z
publishDate 2021-04-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-6ddbbf4aec5a44a7b9e9ddabe582a1be2023-11-21T16:40:53ZengMDPI AGSensors1424-82202021-04-01219294010.3390/s21092940A Machine Vision Rapid Method to Determine the Ripeness Degree of Olive LotsLuciano Ortenzi0Simone Figorilli1Corrado Costa2Federico Pallottino3Simona Violino4Mauro Pagano5Giancarlo Imperi6Rossella Manganiello7Barbara Lanza8Francesca Antonucci9Consiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Della Pascolare 16, 00015 Monterotondo, Rome, ItalyConsiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Della Pascolare 16, 00015 Monterotondo, Rome, ItalyConsiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Della Pascolare 16, 00015 Monterotondo, Rome, ItalyConsiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Della Pascolare 16, 00015 Monterotondo, Rome, ItalyConsiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Della Pascolare 16, 00015 Monterotondo, Rome, ItalyConsiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Della Pascolare 16, 00015 Monterotondo, Rome, ItalyConsiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Della Pascolare 16, 00015 Monterotondo, Rome, ItalyConsiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Della Pascolare 16, 00015 Monterotondo, Rome, ItalyConsiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Viale Lombardia C.da Bucceri, 65012 Cepagatti, Pescara, ItalyConsiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Della Pascolare 16, 00015 Monterotondo, Rome, ItalyThe degree of olive maturation is a very important factor to consider at harvest time, as it influences the organoleptic quality of the final product, for both oil and table use. The Jaén index, evaluated by measuring the average coloring of olive fruits (peel and pulp), is currently considered to be one of the most indicative methods to determine the olive ripening stage, but it is a slow assay and its results are not objective. The aim of this work is to identify the ripeness degree of olive lots through a real-time, repeatable, and objective machine vision method, which uses RGB image analysis based on a k-nearest neighbors classification algorithm. To overcome different lighting scenarios, pictures were subjected to an automatic colorimetric calibration method—an advanced 3D algorithm using known values. To check the performance of the automatic machine vision method, a comparison was made with two visual operator image evaluations. For 10 images, the number of black, green, and purple olives was also visually evaluated by these two operators. The accuracy of the method was 60%. The system could be easily implemented in a specific mobile app developed for the automatic assessment of olive ripeness directly in the field, for advanced georeferenced data analysis.https://www.mdpi.com/1424-8220/21/9/2940k-NNolive maturation indeximage analysisolive harvesting timeimage color calibration
spellingShingle Luciano Ortenzi
Simone Figorilli
Corrado Costa
Federico Pallottino
Simona Violino
Mauro Pagano
Giancarlo Imperi
Rossella Manganiello
Barbara Lanza
Francesca Antonucci
A Machine Vision Rapid Method to Determine the Ripeness Degree of Olive Lots
Sensors
k-NN
olive maturation index
image analysis
olive harvesting time
image color calibration
title A Machine Vision Rapid Method to Determine the Ripeness Degree of Olive Lots
title_full A Machine Vision Rapid Method to Determine the Ripeness Degree of Olive Lots
title_fullStr A Machine Vision Rapid Method to Determine the Ripeness Degree of Olive Lots
title_full_unstemmed A Machine Vision Rapid Method to Determine the Ripeness Degree of Olive Lots
title_short A Machine Vision Rapid Method to Determine the Ripeness Degree of Olive Lots
title_sort machine vision rapid method to determine the ripeness degree of olive lots
topic k-NN
olive maturation index
image analysis
olive harvesting time
image color calibration
url https://www.mdpi.com/1424-8220/21/9/2940
work_keys_str_mv AT lucianoortenzi amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots
AT simonefigorilli amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots
AT corradocosta amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots
AT federicopallottino amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots
AT simonaviolino amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots
AT mauropagano amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots
AT giancarloimperi amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots
AT rossellamanganiello amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots
AT barbaralanza amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots
AT francescaantonucci amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots
AT lucianoortenzi machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots
AT simonefigorilli machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots
AT corradocosta machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots
AT federicopallottino machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots
AT simonaviolino machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots
AT mauropagano machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots
AT giancarloimperi machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots
AT rossellamanganiello machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots
AT barbaralanza machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots
AT francescaantonucci machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots