A Machine Vision Rapid Method to Determine the Ripeness Degree of Olive Lots
The degree of olive maturation is a very important factor to consider at harvest time, as it influences the organoleptic quality of the final product, for both oil and table use. The Jaén index, evaluated by measuring the average coloring of olive fruits (peel and pulp), is currently considered to b...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-04-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/21/9/2940 |
_version_ | 1797536714607034368 |
---|---|
author | Luciano Ortenzi Simone Figorilli Corrado Costa Federico Pallottino Simona Violino Mauro Pagano Giancarlo Imperi Rossella Manganiello Barbara Lanza Francesca Antonucci |
author_facet | Luciano Ortenzi Simone Figorilli Corrado Costa Federico Pallottino Simona Violino Mauro Pagano Giancarlo Imperi Rossella Manganiello Barbara Lanza Francesca Antonucci |
author_sort | Luciano Ortenzi |
collection | DOAJ |
description | The degree of olive maturation is a very important factor to consider at harvest time, as it influences the organoleptic quality of the final product, for both oil and table use. The Jaén index, evaluated by measuring the average coloring of olive fruits (peel and pulp), is currently considered to be one of the most indicative methods to determine the olive ripening stage, but it is a slow assay and its results are not objective. The aim of this work is to identify the ripeness degree of olive lots through a real-time, repeatable, and objective machine vision method, which uses RGB image analysis based on a k-nearest neighbors classification algorithm. To overcome different lighting scenarios, pictures were subjected to an automatic colorimetric calibration method—an advanced 3D algorithm using known values. To check the performance of the automatic machine vision method, a comparison was made with two visual operator image evaluations. For 10 images, the number of black, green, and purple olives was also visually evaluated by these two operators. The accuracy of the method was 60%. The system could be easily implemented in a specific mobile app developed for the automatic assessment of olive ripeness directly in the field, for advanced georeferenced data analysis. |
first_indexed | 2024-03-10T12:04:45Z |
format | Article |
id | doaj.art-6ddbbf4aec5a44a7b9e9ddabe582a1be |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-10T12:04:45Z |
publishDate | 2021-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-6ddbbf4aec5a44a7b9e9ddabe582a1be2023-11-21T16:40:53ZengMDPI AGSensors1424-82202021-04-01219294010.3390/s21092940A Machine Vision Rapid Method to Determine the Ripeness Degree of Olive LotsLuciano Ortenzi0Simone Figorilli1Corrado Costa2Federico Pallottino3Simona Violino4Mauro Pagano5Giancarlo Imperi6Rossella Manganiello7Barbara Lanza8Francesca Antonucci9Consiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Della Pascolare 16, 00015 Monterotondo, Rome, ItalyConsiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Della Pascolare 16, 00015 Monterotondo, Rome, ItalyConsiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Della Pascolare 16, 00015 Monterotondo, Rome, ItalyConsiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Della Pascolare 16, 00015 Monterotondo, Rome, ItalyConsiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Della Pascolare 16, 00015 Monterotondo, Rome, ItalyConsiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Della Pascolare 16, 00015 Monterotondo, Rome, ItalyConsiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Della Pascolare 16, 00015 Monterotondo, Rome, ItalyConsiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Della Pascolare 16, 00015 Monterotondo, Rome, ItalyConsiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Viale Lombardia C.da Bucceri, 65012 Cepagatti, Pescara, ItalyConsiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Della Pascolare 16, 00015 Monterotondo, Rome, ItalyThe degree of olive maturation is a very important factor to consider at harvest time, as it influences the organoleptic quality of the final product, for both oil and table use. The Jaén index, evaluated by measuring the average coloring of olive fruits (peel and pulp), is currently considered to be one of the most indicative methods to determine the olive ripening stage, but it is a slow assay and its results are not objective. The aim of this work is to identify the ripeness degree of olive lots through a real-time, repeatable, and objective machine vision method, which uses RGB image analysis based on a k-nearest neighbors classification algorithm. To overcome different lighting scenarios, pictures were subjected to an automatic colorimetric calibration method—an advanced 3D algorithm using known values. To check the performance of the automatic machine vision method, a comparison was made with two visual operator image evaluations. For 10 images, the number of black, green, and purple olives was also visually evaluated by these two operators. The accuracy of the method was 60%. The system could be easily implemented in a specific mobile app developed for the automatic assessment of olive ripeness directly in the field, for advanced georeferenced data analysis.https://www.mdpi.com/1424-8220/21/9/2940k-NNolive maturation indeximage analysisolive harvesting timeimage color calibration |
spellingShingle | Luciano Ortenzi Simone Figorilli Corrado Costa Federico Pallottino Simona Violino Mauro Pagano Giancarlo Imperi Rossella Manganiello Barbara Lanza Francesca Antonucci A Machine Vision Rapid Method to Determine the Ripeness Degree of Olive Lots Sensors k-NN olive maturation index image analysis olive harvesting time image color calibration |
title | A Machine Vision Rapid Method to Determine the Ripeness Degree of Olive Lots |
title_full | A Machine Vision Rapid Method to Determine the Ripeness Degree of Olive Lots |
title_fullStr | A Machine Vision Rapid Method to Determine the Ripeness Degree of Olive Lots |
title_full_unstemmed | A Machine Vision Rapid Method to Determine the Ripeness Degree of Olive Lots |
title_short | A Machine Vision Rapid Method to Determine the Ripeness Degree of Olive Lots |
title_sort | machine vision rapid method to determine the ripeness degree of olive lots |
topic | k-NN olive maturation index image analysis olive harvesting time image color calibration |
url | https://www.mdpi.com/1424-8220/21/9/2940 |
work_keys_str_mv | AT lucianoortenzi amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots AT simonefigorilli amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots AT corradocosta amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots AT federicopallottino amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots AT simonaviolino amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots AT mauropagano amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots AT giancarloimperi amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots AT rossellamanganiello amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots AT barbaralanza amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots AT francescaantonucci amachinevisionrapidmethodtodeterminetheripenessdegreeofolivelots AT lucianoortenzi machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots AT simonefigorilli machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots AT corradocosta machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots AT federicopallottino machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots AT simonaviolino machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots AT mauropagano machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots AT giancarloimperi machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots AT rossellamanganiello machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots AT barbaralanza machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots AT francescaantonucci machinevisionrapidmethodtodeterminetheripenessdegreeofolivelots |