Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe

<p>Data assimilation (DA) of remotely sensed leaf area index (LAI) can help to improve land surface model estimates of energy, water, and carbon variables. So far, most studies have used bias-blind LAI DA approaches, i.e. without correcting for biases between model forecasts and observations....

Full description

Bibliographic Details
Main Authors: S. Scherrer, G. De Lannoy, Z. Heyvaert, M. Bechtold, C. Albergel, T. S. El-Madany, W. Dorigo
Format: Article
Language:English
Published: Copernicus Publications 2023-11-01
Series:Hydrology and Earth System Sciences
Online Access:https://hess.copernicus.org/articles/27/4087/2023/hess-27-4087-2023.pdf
_version_ 1797628647342866432
author S. Scherrer
S. Scherrer
G. De Lannoy
Z. Heyvaert
Z. Heyvaert
M. Bechtold
C. Albergel
T. S. El-Madany
W. Dorigo
author_facet S. Scherrer
S. Scherrer
G. De Lannoy
Z. Heyvaert
Z. Heyvaert
M. Bechtold
C. Albergel
T. S. El-Madany
W. Dorigo
author_sort S. Scherrer
collection DOAJ
description <p>Data assimilation (DA) of remotely sensed leaf area index (LAI) can help to improve land surface model estimates of energy, water, and carbon variables. So far, most studies have used bias-blind LAI DA approaches, i.e. without correcting for biases between model forecasts and observations. This might hamper the performance of the DA algorithms in the case of large biases in observations or simulations or both. We perform bias-blind and bias-aware DA of Copernicus Global Land Service LAI into the Noah-MP land surface model forced by the ERA5 reanalysis over Europe in the 2002–2019 period, and we evaluate how the choice of bias correction affects estimates of gross primary productivity (GPP), evapotranspiration (ET), runoff, and soil moisture.</p> <p>In areas with a large LAI bias, the bias-blind LAI DA leads to a reduced bias between observed and modelled LAI, an improved agreement of GPP, ET, and runoff estimates with independent products, but a worse agreement of soil moisture estimates with the European Space Agency Climate Change Initiative (ESA CCI) soil moisture product. While comparisons to in situ soil moisture in areas with weak bias indicate an improvement of the representation of soil moisture climatology, bias-blind LAI DA can lead to unrealistic shifts in soil moisture climatology in areas with strong bias. For example, when the assimilated LAI data in irrigated areas are much higher than those simulated without any irrigation activated, LAI will be increased and soil moisture will be depleted. Furthermore, the bias-blind LAI DA produces a pronounced sawtooth pattern due to model drift between DA updates, because each update pushes the Noah-MP leaf model to an unstable state. This model drift also propagates to short-term estimates of GPP and ET and to internal DA diagnostics that indicate a suboptimal DA system performance.</p> <p>The bias-aware approaches based on a priori rescaling of LAI observations to the model climatology avoid the negative effects of the bias-blind assimilation. They retain the improvements in GPP anomalies from the bias-blind DA but forego improvements in the root mean square deviations (RMSDs) of GPP, ET, and runoff. As an alternative to rescaling, we discuss the implications of our results for model calibration or joint parameter and state update DA, which has the potential to combine bias reduction with optimal DA system performance.</p>
first_indexed 2024-03-11T10:42:53Z
format Article
id doaj.art-6ddeabef306f45d09a8ad1633e545aba
institution Directory Open Access Journal
issn 1027-5606
1607-7938
language English
last_indexed 2024-03-11T10:42:53Z
publishDate 2023-11-01
publisher Copernicus Publications
record_format Article
series Hydrology and Earth System Sciences
spelling doaj.art-6ddeabef306f45d09a8ad1633e545aba2023-11-14T08:15:25ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382023-11-01274087411410.5194/hess-27-4087-2023Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over EuropeS. Scherrer0S. Scherrer1G. De Lannoy2Z. Heyvaert3Z. Heyvaert4M. Bechtold5C. Albergel6T. S. El-Madany7W. Dorigo8Department of Geodesy and Geoinformation, TU Wien, Vienna, AustriaDepartment of Earth and Environmental Sciences, KU Leuven, Heverlee, BelgiumDepartment of Earth and Environmental Sciences, KU Leuven, Heverlee, BelgiumDepartment of Geodesy and Geoinformation, TU Wien, Vienna, AustriaDepartment of Earth and Environmental Sciences, KU Leuven, Heverlee, BelgiumDepartment of Earth and Environmental Sciences, KU Leuven, Heverlee, BelgiumEuropean Space Agency Climate Office, ECSAT, Didcot, UKDepartment Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, GermanyDepartment of Geodesy and Geoinformation, TU Wien, Vienna, Austria<p>Data assimilation (DA) of remotely sensed leaf area index (LAI) can help to improve land surface model estimates of energy, water, and carbon variables. So far, most studies have used bias-blind LAI DA approaches, i.e. without correcting for biases between model forecasts and observations. This might hamper the performance of the DA algorithms in the case of large biases in observations or simulations or both. We perform bias-blind and bias-aware DA of Copernicus Global Land Service LAI into the Noah-MP land surface model forced by the ERA5 reanalysis over Europe in the 2002–2019 period, and we evaluate how the choice of bias correction affects estimates of gross primary productivity (GPP), evapotranspiration (ET), runoff, and soil moisture.</p> <p>In areas with a large LAI bias, the bias-blind LAI DA leads to a reduced bias between observed and modelled LAI, an improved agreement of GPP, ET, and runoff estimates with independent products, but a worse agreement of soil moisture estimates with the European Space Agency Climate Change Initiative (ESA CCI) soil moisture product. While comparisons to in situ soil moisture in areas with weak bias indicate an improvement of the representation of soil moisture climatology, bias-blind LAI DA can lead to unrealistic shifts in soil moisture climatology in areas with strong bias. For example, when the assimilated LAI data in irrigated areas are much higher than those simulated without any irrigation activated, LAI will be increased and soil moisture will be depleted. Furthermore, the bias-blind LAI DA produces a pronounced sawtooth pattern due to model drift between DA updates, because each update pushes the Noah-MP leaf model to an unstable state. This model drift also propagates to short-term estimates of GPP and ET and to internal DA diagnostics that indicate a suboptimal DA system performance.</p> <p>The bias-aware approaches based on a priori rescaling of LAI observations to the model climatology avoid the negative effects of the bias-blind assimilation. They retain the improvements in GPP anomalies from the bias-blind DA but forego improvements in the root mean square deviations (RMSDs) of GPP, ET, and runoff. As an alternative to rescaling, we discuss the implications of our results for model calibration or joint parameter and state update DA, which has the potential to combine bias reduction with optimal DA system performance.</p>https://hess.copernicus.org/articles/27/4087/2023/hess-27-4087-2023.pdf
spellingShingle S. Scherrer
S. Scherrer
G. De Lannoy
Z. Heyvaert
Z. Heyvaert
M. Bechtold
C. Albergel
T. S. El-Madany
W. Dorigo
Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
Hydrology and Earth System Sciences
title Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
title_full Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
title_fullStr Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
title_full_unstemmed Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
title_short Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
title_sort bias blind and bias aware assimilation of leaf area index into the noah mp land surface model over europe
url https://hess.copernicus.org/articles/27/4087/2023/hess-27-4087-2023.pdf
work_keys_str_mv AT sscherrer biasblindandbiasawareassimilationofleafareaindexintothenoahmplandsurfacemodelovereurope
AT sscherrer biasblindandbiasawareassimilationofleafareaindexintothenoahmplandsurfacemodelovereurope
AT gdelannoy biasblindandbiasawareassimilationofleafareaindexintothenoahmplandsurfacemodelovereurope
AT zheyvaert biasblindandbiasawareassimilationofleafareaindexintothenoahmplandsurfacemodelovereurope
AT zheyvaert biasblindandbiasawareassimilationofleafareaindexintothenoahmplandsurfacemodelovereurope
AT mbechtold biasblindandbiasawareassimilationofleafareaindexintothenoahmplandsurfacemodelovereurope
AT calbergel biasblindandbiasawareassimilationofleafareaindexintothenoahmplandsurfacemodelovereurope
AT tselmadany biasblindandbiasawareassimilationofleafareaindexintothenoahmplandsurfacemodelovereurope
AT wdorigo biasblindandbiasawareassimilationofleafareaindexintothenoahmplandsurfacemodelovereurope