Transcriptomics analyses of IL-1β-stimulated rat chondrocytes in temporomandibular joint condyles and effect of platelet-rich plasma

The biological mechanism of action of platelet-rich plasma (PRP) in the treatment of temporomandibular joint (TMJ) osteoarthritis remains unclear. This study explored the mechanisms underlying interleukin (IL)-1β-induced inflammation and investigated the effect of PRP on TMJ condylar chondrocytes. P...

Full description

Bibliographic Details
Main Authors: Shasha Liu, Chaolun Wu, Yuxin Zhang
Format: Article
Language:English
Published: Elsevier 2024-02-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844024027701
Description
Summary:The biological mechanism of action of platelet-rich plasma (PRP) in the treatment of temporomandibular joint (TMJ) osteoarthritis remains unclear. This study explored the mechanisms underlying interleukin (IL)-1β-induced inflammation and investigated the effect of PRP on TMJ condylar chondrocytes. Primary chondrocytes were isolated from the TMJ condyle of 4-week-old rats, and differentially expressed genes among three treatment groups (phosphate-buffered saline [control], IL-1β, and IL-1β + PRP) were identified using RNA-seq and characterized using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes path-enrichment analyses. IL-1β caused inflammatory injury to chondrocytes by upregulating the TNF, NF-κB, and IL-17 signaling pathways and downregulating the MAPK and PI3K/Akt signaling pathways. PRP activated the MAPK and PI3K/Akt signaling pathways, exerting a protective effect on IL-1β-induced chondrocytes. PRP also activated the TNF and IL-17 signaling pathways, producing an inflammatory effect. Additionally, PRP increased the mRNA expression of the matrix catabolism-related genes Mmp3, Mmp9, and Mmp13; the proliferative markers Mki67 and PCNA; and the anti-apoptotic genes of the Bcl-2 family (Bcl2a1 and Bok), while reducing the expression of the pro-apoptotic genes Casp4 and Casp12. The findings suggest that the protective effect of PRP on IL-1β-induced chondrocyte injury is mainly achieved via MAPK-PI3K/Akt signaling, increasing cell proliferation and inhibiting cell apoptosis.
ISSN:2405-8440