Global structure of positive solutions for third-order semipositone integral boundary value problems

<p>In this paper, we were concerned with the global behavior of positive solutions for third-order semipositone problems with an integral boundary condition</p> <p class="disp_formula">$ \begin{equation*} \begin{split} &amp;y'''+\beta y''+\...

Full description

Bibliographic Details
Main Authors: Zhonghua Bi, Sanyang Liu
Format: Article
Language:English
Published: AIMS Press 2024-02-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2024353?viewType=HTML
_version_ 1827338202626654208
author Zhonghua Bi
Sanyang Liu
author_facet Zhonghua Bi
Sanyang Liu
author_sort Zhonghua Bi
collection DOAJ
description <p>In this paper, we were concerned with the global behavior of positive solutions for third-order semipositone problems with an integral boundary condition</p> <p class="disp_formula">$ \begin{equation*} \begin{split} &amp;y'''+\beta y''+\alpha y'+\lambda f(t,y) = 0,\; \; \; t\in(0,1),\\ &amp;y(0) = y'(0) = 0,\; \; \; y(1) = \chi\int^1_0y(s)ds, \end{split} \end{equation*} $</p> <p>where $ \alpha\in(0, \infty) $ and $ \beta\in(-\infty, \infty) $ are two constants, $ \lambda, \chi $ are two positive parameters, and $ f\in C([0, 1]\times[0, \infty), \mathbb{R}) $ with $ f(t, 0) &lt; 0 $. Our analysis mainly relied on the bifurcation theory.</p>
first_indexed 2024-03-07T19:11:19Z
format Article
id doaj.art-6e0409eb243f45378525bbffd6a18729
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-03-07T19:11:19Z
publishDate 2024-02-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-6e0409eb243f45378525bbffd6a187292024-03-01T01:13:45ZengAIMS PressAIMS Mathematics2473-69882024-02-01937273729210.3934/math.2024353Global structure of positive solutions for third-order semipositone integral boundary value problemsZhonghua Bi0Sanyang Liu1School of Mathematics and Statistics, Xidian University, Xi'an, 710126, ChinaSchool of Mathematics and Statistics, Xidian University, Xi'an, 710126, China<p>In this paper, we were concerned with the global behavior of positive solutions for third-order semipositone problems with an integral boundary condition</p> <p class="disp_formula">$ \begin{equation*} \begin{split} &amp;y'''+\beta y''+\alpha y'+\lambda f(t,y) = 0,\; \; \; t\in(0,1),\\ &amp;y(0) = y'(0) = 0,\; \; \; y(1) = \chi\int^1_0y(s)ds, \end{split} \end{equation*} $</p> <p>where $ \alpha\in(0, \infty) $ and $ \beta\in(-\infty, \infty) $ are two constants, $ \lambda, \chi $ are two positive parameters, and $ f\in C([0, 1]\times[0, \infty), \mathbb{R}) $ with $ f(t, 0) &lt; 0 $. Our analysis mainly relied on the bifurcation theory.</p>https://www.aimspress.com/article/doi/10.3934/math.2024353?viewType=HTMLpositive solutionssemipositonethird-order integral boundary value problemsbifurcation
spellingShingle Zhonghua Bi
Sanyang Liu
Global structure of positive solutions for third-order semipositone integral boundary value problems
AIMS Mathematics
positive solutions
semipositone
third-order integral boundary value problems
bifurcation
title Global structure of positive solutions for third-order semipositone integral boundary value problems
title_full Global structure of positive solutions for third-order semipositone integral boundary value problems
title_fullStr Global structure of positive solutions for third-order semipositone integral boundary value problems
title_full_unstemmed Global structure of positive solutions for third-order semipositone integral boundary value problems
title_short Global structure of positive solutions for third-order semipositone integral boundary value problems
title_sort global structure of positive solutions for third order semipositone integral boundary value problems
topic positive solutions
semipositone
third-order integral boundary value problems
bifurcation
url https://www.aimspress.com/article/doi/10.3934/math.2024353?viewType=HTML
work_keys_str_mv AT zhonghuabi globalstructureofpositivesolutionsforthirdordersemipositoneintegralboundaryvalueproblems
AT sanyangliu globalstructureofpositivesolutionsforthirdordersemipositoneintegralboundaryvalueproblems