Utilization of O<sub>4</sub> slant column density to derive aerosol layer height from a space-borne UV–visible hyperspectral sensor: sensitivity and case study

The sensitivities of oxygen-dimer (O<sub>4</sub>) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and t...

Full description

Bibliographic Details
Main Authors: S. S. Park, J. Kim, H. Lee, O. Torres, K.-M. Lee, S. D. Lee
Format: Article
Language:English
Published: Copernicus Publications 2016-02-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/16/1987/2016/acp-16-1987-2016.pdf
_version_ 1811336150103621632
author S. S. Park
S. S. Park
J. Kim
H. Lee
H. Lee
O. Torres
K.-M. Lee
S. D. Lee
author_facet S. S. Park
S. S. Park
J. Kim
H. Lee
H. Lee
O. Torres
K.-M. Lee
S. D. Lee
author_sort S. S. Park
collection DOAJ
description The sensitivities of oxygen-dimer (O<sub>4</sub>) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O<sub>4</sub> SCD by 10<sup>40</sup> molecules<sup>2</sup> cm<sup>−5</sup>, to aerosol types and optical properties are also evaluated and compared. Among the O<sub>4</sub> absorption bands at 340, 360, 380, and 477 nm, the O<sub>4</sub> absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 % of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.
first_indexed 2024-04-13T17:35:07Z
format Article
id doaj.art-6e07e9369033485392b3aefa2f9508f2
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-13T17:35:07Z
publishDate 2016-02-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-6e07e9369033485392b3aefa2f9508f22022-12-22T02:37:25ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242016-02-01161987200610.5194/acp-16-1987-2016Utilization of O<sub>4</sub> slant column density to derive aerosol layer height from a space-borne UV–visible hyperspectral sensor: sensitivity and case studyS. S. Park0S. S. Park1J. Kim2H. Lee3H. Lee4O. Torres5K.-M. Lee6S. D. Lee7Department of Atmospheric Sciences, Yonsei University, Seoul, South Koreanow at: Research Institute for Applied Mechanics, Kyushu University, Fukuoka, JapanDepartment of Atmospheric Sciences, Yonsei University, Seoul, South KoreaDepartment of Atmospheric Sciences, Yonsei University, Seoul, South KoreaDepartment of Spatial Information Engineering, Pukyong National University, Busan, South KoreaNASA Goddard Space Flight Center, Greenbelt, Maryland, USADepartment of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu, South KoreaNational Institute of Environment Research, Ministry of Environment, Incheon, South KoreaThe sensitivities of oxygen-dimer (O<sub>4</sub>) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O<sub>4</sub> SCD by 10<sup>40</sup> molecules<sup>2</sup> cm<sup>−5</sup>, to aerosol types and optical properties are also evaluated and compared. Among the O<sub>4</sub> absorption bands at 340, 360, 380, and 477 nm, the O<sub>4</sub> absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 % of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.https://www.atmos-chem-phys.net/16/1987/2016/acp-16-1987-2016.pdf
spellingShingle S. S. Park
S. S. Park
J. Kim
H. Lee
H. Lee
O. Torres
K.-M. Lee
S. D. Lee
Utilization of O<sub>4</sub> slant column density to derive aerosol layer height from a space-borne UV–visible hyperspectral sensor: sensitivity and case study
Atmospheric Chemistry and Physics
title Utilization of O<sub>4</sub> slant column density to derive aerosol layer height from a space-borne UV–visible hyperspectral sensor: sensitivity and case study
title_full Utilization of O<sub>4</sub> slant column density to derive aerosol layer height from a space-borne UV–visible hyperspectral sensor: sensitivity and case study
title_fullStr Utilization of O<sub>4</sub> slant column density to derive aerosol layer height from a space-borne UV–visible hyperspectral sensor: sensitivity and case study
title_full_unstemmed Utilization of O<sub>4</sub> slant column density to derive aerosol layer height from a space-borne UV–visible hyperspectral sensor: sensitivity and case study
title_short Utilization of O<sub>4</sub> slant column density to derive aerosol layer height from a space-borne UV–visible hyperspectral sensor: sensitivity and case study
title_sort utilization of o sub 4 sub slant column density to derive aerosol layer height from a space borne uv visible hyperspectral sensor sensitivity and case study
url https://www.atmos-chem-phys.net/16/1987/2016/acp-16-1987-2016.pdf
work_keys_str_mv AT sspark utilizationofosub4subslantcolumndensitytoderiveaerosollayerheightfromaspaceborneuvvisiblehyperspectralsensorsensitivityandcasestudy
AT sspark utilizationofosub4subslantcolumndensitytoderiveaerosollayerheightfromaspaceborneuvvisiblehyperspectralsensorsensitivityandcasestudy
AT jkim utilizationofosub4subslantcolumndensitytoderiveaerosollayerheightfromaspaceborneuvvisiblehyperspectralsensorsensitivityandcasestudy
AT hlee utilizationofosub4subslantcolumndensitytoderiveaerosollayerheightfromaspaceborneuvvisiblehyperspectralsensorsensitivityandcasestudy
AT hlee utilizationofosub4subslantcolumndensitytoderiveaerosollayerheightfromaspaceborneuvvisiblehyperspectralsensorsensitivityandcasestudy
AT otorres utilizationofosub4subslantcolumndensitytoderiveaerosollayerheightfromaspaceborneuvvisiblehyperspectralsensorsensitivityandcasestudy
AT kmlee utilizationofosub4subslantcolumndensitytoderiveaerosollayerheightfromaspaceborneuvvisiblehyperspectralsensorsensitivityandcasestudy
AT sdlee utilizationofosub4subslantcolumndensitytoderiveaerosollayerheightfromaspaceborneuvvisiblehyperspectralsensorsensitivityandcasestudy