A Microfluidic Paper-Based Analytical Device for Type-II Pyrethroid Targets in an Environmental Water Sample

A detection method for type-II pyrethroids in an environmental water sample using a microfluidic paper-based analytical device (µPAD) is reported here. The detection approach is based on the formation of cyanide from the hydrolysis of type-II pyrethroids and the colorimetric detection of cyanide on...

Full description

Bibliographic Details
Main Authors: Sumate Pengpumkiat, Jintana Nammoonnoy, Watcharaporn Wongsakoonkan, Pajaree Konthonbut, Pornpimol Kongtip
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/15/4107
Description
Summary:A detection method for type-II pyrethroids in an environmental water sample using a microfluidic paper-based analytical device (µPAD) is reported here. The detection approach is based on the formation of cyanide from the hydrolysis of type-II pyrethroids and the colorimetric detection of cyanide on a layer-based µPAD. Parafilm and inexpensive laminating pouches were used to create a hydrophobic barrier for the assay on the µPAD. This detection approach was selective to type-II pyrethroids in water for which an environmental water sample was tested. The calibration curves for cypermethrin, deltamethrin, cyhalothrin, and fenvalerate ranged from 2 to 40 µg/mL without sample preconcentration. The lower concentrations of type-II pyrethroids can be assessed by including a preconcentration step prior to the detection on a µPAD. This detection system provides an alternative platform for fast, semiquantitative testing for pesticide contamination in environmental surface water by allowing for portability, low reagent/sample consumption, and low-cost testing.
ISSN:1424-8220