Deep Learning for Fingerprint Localization in Indoor and Outdoor Environments

Wi-Fi and magnetic field fingerprinting-based localization have gained increased attention owing to their satisfactory accuracy and global availability. The common signal-based fingerprint localization deteriorates due to well-known signal fluctuations. In this paper, we proposed a Wi-Fi and magneti...

Full description

Bibliographic Details
Main Authors: Da Li, Yingke Lei, Xin Li, Haichuan Zhang
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:ISPRS International Journal of Geo-Information
Subjects:
Online Access:https://www.mdpi.com/2220-9964/9/4/267
Description
Summary:Wi-Fi and magnetic field fingerprinting-based localization have gained increased attention owing to their satisfactory accuracy and global availability. The common signal-based fingerprint localization deteriorates due to well-known signal fluctuations. In this paper, we proposed a Wi-Fi and magnetic field-based localization system based on deep learning. Owing to the low discernibility of magnetic field strength (MFS) in large areas, the unsupervised learning density peak clustering algorithm based on the comparison distance (CDPC) algorithm is first used to pick up several center points of MFS as the geotagged features to assist localization. Considering the state-of-the-art application of deep learning in image classification, we design a location fingerprint image using Wi-Fi and magnetic field fingerprints for localization. Localization is casted in a proposed deep residual network (Resnet) that is capable of learning key features from a massive fingerprint image database. To further enhance localization accuracy, by leveraging the prior information of the pre-trained Resnet coarse localizer, an MLP-based transfer learning fine localizer is introduced to fine-tune the coarse localizer. Additionally, we dynamically adjusted the learning rate (LR) and adopted several data enhancement methods to increase the robustness of our localization system. Experimental results show that the proposed system leads to satisfactory localization performance both in indoor and outdoor environments.
ISSN:2220-9964