Reconstructing Loads in Nanoplates from Dynamic Data

It was recently proved that the knowledge of the transverse displacement of a nanoplate in an open subset of its mid-plane, measured for any interval of time, allows for the unique determination of the spatial components <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML&q...

Full description

Bibliographic Details
Main Authors: Alexandre Kawano, Antonino Morassi
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/4/398
_version_ 1827745902170734592
author Alexandre Kawano
Antonino Morassi
author_facet Alexandre Kawano
Antonino Morassi
author_sort Alexandre Kawano
collection DOAJ
description It was recently proved that the knowledge of the transverse displacement of a nanoplate in an open subset of its mid-plane, measured for any interval of time, allows for the unique determination of the spatial components <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mo>{</mo><msub><mi>f</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>}</mo></mrow><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></msubsup></semantics></math></inline-formula> of the transverse load <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mo>∑</mo><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></msubsup><msub><mi>g</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><msub><mi>f</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mo>{</mo><msub><mi>g</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>}</mo></mrow><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></msubsup></semantics></math></inline-formula> is a known set of linearly independent functions of the time variable. The nanoplate mechanical model is built within the strain gradient linear elasticity theory, according to the Kirchhoff–Love kinematic assumptions. In this paper, we derive a reconstruction algorithm for the above inverse source problem, and we implement a numerical procedure based on a finite element spatial discretization to approximate the loads <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mo>{</mo><msub><mi>f</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>}</mo></mrow><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></msubsup></semantics></math></inline-formula>. The computations are developed for a uniform rectangular nanoplate clamped at the boundary. The sensitivity of the results with respect to the main parameters that influence the identification is analyzed in detail. The adoption of a regularization scheme based on the singular value decomposition turns out to be decisive for the accuracy and stability of the reconstruction.
first_indexed 2024-03-11T05:15:01Z
format Article
id doaj.art-6e24bff016064020857af6f11b5f618e
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-11T05:15:01Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-6e24bff016064020857af6f11b5f618e2023-11-17T18:19:48ZengMDPI AGAxioms2075-16802023-04-0112439810.3390/axioms12040398Reconstructing Loads in Nanoplates from Dynamic DataAlexandre Kawano0Antonino Morassi1Escola Politécnica, University of São Paulo, Av. Prof. Luciano Gualberto, 380-Butantã, São Paulo 05508-010, BrazilPolytechnic Department of Engineering and Architecture, University of Udine, Via Cotonificio 114, 33100 Udine, ItalyIt was recently proved that the knowledge of the transverse displacement of a nanoplate in an open subset of its mid-plane, measured for any interval of time, allows for the unique determination of the spatial components <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mo>{</mo><msub><mi>f</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>}</mo></mrow><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></msubsup></semantics></math></inline-formula> of the transverse load <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mo>∑</mo><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></msubsup><msub><mi>g</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><msub><mi>f</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mo>{</mo><msub><mi>g</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>}</mo></mrow><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></msubsup></semantics></math></inline-formula> is a known set of linearly independent functions of the time variable. The nanoplate mechanical model is built within the strain gradient linear elasticity theory, according to the Kirchhoff–Love kinematic assumptions. In this paper, we derive a reconstruction algorithm for the above inverse source problem, and we implement a numerical procedure based on a finite element spatial discretization to approximate the loads <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mo>{</mo><msub><mi>f</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>}</mo></mrow><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></msubsup></semantics></math></inline-formula>. The computations are developed for a uniform rectangular nanoplate clamped at the boundary. The sensitivity of the results with respect to the main parameters that influence the identification is analyzed in detail. The adoption of a regularization scheme based on the singular value decomposition turns out to be decisive for the accuracy and stability of the reconstruction.https://www.mdpi.com/2075-1680/12/4/398inverse problemsload reconstructionnanoplatesstrain-gradient elasticitylinear dynamics
spellingShingle Alexandre Kawano
Antonino Morassi
Reconstructing Loads in Nanoplates from Dynamic Data
Axioms
inverse problems
load reconstruction
nanoplates
strain-gradient elasticity
linear dynamics
title Reconstructing Loads in Nanoplates from Dynamic Data
title_full Reconstructing Loads in Nanoplates from Dynamic Data
title_fullStr Reconstructing Loads in Nanoplates from Dynamic Data
title_full_unstemmed Reconstructing Loads in Nanoplates from Dynamic Data
title_short Reconstructing Loads in Nanoplates from Dynamic Data
title_sort reconstructing loads in nanoplates from dynamic data
topic inverse problems
load reconstruction
nanoplates
strain-gradient elasticity
linear dynamics
url https://www.mdpi.com/2075-1680/12/4/398
work_keys_str_mv AT alexandrekawano reconstructingloadsinnanoplatesfromdynamicdata
AT antoninomorassi reconstructingloadsinnanoplatesfromdynamicdata