Estimation of the Six Sigma Quality Index

The measurement of the process capability is a key part of quantitative quality control, and process capability indices are statistical measures of the process capability. Six Sigma level represents the maximum achievable process capability, and many enterprises have implemented Six Sigma improvemen...

Full description

Bibliographic Details
Main Authors: Chun-Chieh Tseng, Kuo-Ching Chiou, Kuen-Suan Chen
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/19/3458
_version_ 1797478195893633024
author Chun-Chieh Tseng
Kuo-Ching Chiou
Kuen-Suan Chen
author_facet Chun-Chieh Tseng
Kuo-Ching Chiou
Kuen-Suan Chen
author_sort Chun-Chieh Tseng
collection DOAJ
description The measurement of the process capability is a key part of quantitative quality control, and process capability indices are statistical measures of the process capability. Six Sigma level represents the maximum achievable process capability, and many enterprises have implemented Six Sigma improvement strategies. In recent years, many studies have investigated Six Sigma quality indices, including <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Q</mi><mrow><mi>p</mi><mi>k</mi></mrow></msub></mrow></semantics></math></inline-formula>. However, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Q</mi><mrow><mi>p</mi><mi>k</mi></mrow></msub></mrow></semantics></math></inline-formula> contains two unknown parameters, namely <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>, which are difficult to use in process control. Therefore, whether a process quality reaches the <i>k</i> sigma level must be statistically inferred. Moreover, the statistical method of sampling distribution is challenging for the upper confidence limits of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Q</mi><mrow><mi>p</mi><mi>k</mi></mrow></msub></mrow></semantics></math></inline-formula>. We address these two difficulties in the present study and propose a methodology to solve them. Boole’s inequality, Demorgan’s theorem, and linear programming were integrated to derive the confidence intervals of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Q</mi><mrow><mi>p</mi><mi>k</mi></mrow></msub></mrow></semantics></math></inline-formula>, and then the upper confidence limits were used to perform hypothesis testing. This study involved a case study of the semiconductor assembly process in order to verify the feasibility of the proposed method.
first_indexed 2024-03-09T21:28:35Z
format Article
id doaj.art-6e29035f4304488b8318875920b133a0
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T21:28:35Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-6e29035f4304488b8318875920b133a02023-11-23T21:01:51ZengMDPI AGMathematics2227-73902022-09-011019345810.3390/math10193458Estimation of the Six Sigma Quality IndexChun-Chieh Tseng0Kuo-Ching Chiou1Kuen-Suan Chen2School of Internet Economics and Business, Fujian University of Technology, Fuzhou 350014, ChinaDepartment of Finance, Chaoyang University of Technology, Taichung 413310, TaiwanDepartment of Industrial Engineering and Management, National Chin-Yi University of Technology, Taichung 411030, TaiwanThe measurement of the process capability is a key part of quantitative quality control, and process capability indices are statistical measures of the process capability. Six Sigma level represents the maximum achievable process capability, and many enterprises have implemented Six Sigma improvement strategies. In recent years, many studies have investigated Six Sigma quality indices, including <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Q</mi><mrow><mi>p</mi><mi>k</mi></mrow></msub></mrow></semantics></math></inline-formula>. However, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Q</mi><mrow><mi>p</mi><mi>k</mi></mrow></msub></mrow></semantics></math></inline-formula> contains two unknown parameters, namely <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>, which are difficult to use in process control. Therefore, whether a process quality reaches the <i>k</i> sigma level must be statistically inferred. Moreover, the statistical method of sampling distribution is challenging for the upper confidence limits of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Q</mi><mrow><mi>p</mi><mi>k</mi></mrow></msub></mrow></semantics></math></inline-formula>. We address these two difficulties in the present study and propose a methodology to solve them. Boole’s inequality, Demorgan’s theorem, and linear programming were integrated to derive the confidence intervals of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Q</mi><mrow><mi>p</mi><mi>k</mi></mrow></msub></mrow></semantics></math></inline-formula>, and then the upper confidence limits were used to perform hypothesis testing. This study involved a case study of the semiconductor assembly process in order to verify the feasibility of the proposed method.https://www.mdpi.com/2227-7390/10/19/3458Six Sigma quality indexlinear programmingestimationsupper confidence limitstatistic hypothesis testing
spellingShingle Chun-Chieh Tseng
Kuo-Ching Chiou
Kuen-Suan Chen
Estimation of the Six Sigma Quality Index
Mathematics
Six Sigma quality index
linear programming
estimations
upper confidence limit
statistic hypothesis testing
title Estimation of the Six Sigma Quality Index
title_full Estimation of the Six Sigma Quality Index
title_fullStr Estimation of the Six Sigma Quality Index
title_full_unstemmed Estimation of the Six Sigma Quality Index
title_short Estimation of the Six Sigma Quality Index
title_sort estimation of the six sigma quality index
topic Six Sigma quality index
linear programming
estimations
upper confidence limit
statistic hypothesis testing
url https://www.mdpi.com/2227-7390/10/19/3458
work_keys_str_mv AT chunchiehtseng estimationofthesixsigmaqualityindex
AT kuochingchiou estimationofthesixsigmaqualityindex
AT kuensuanchen estimationofthesixsigmaqualityindex