The Robinson―Schensted Correspondence and $A_2$-webs

The $A_2$-spider category encodes the representation theory of the $sl_3$ quantum group. Kuperberg (1996) introduced a combinatorial version of this category, wherein morphisms are represented by planar graphs called $\textit{webs}$ and the subset of $\textit{reduced webs}$ forms bases for morphism...

Full description

Bibliographic Details
Main Authors: Matthew Housley, Heather M. Russell, Julianna Tymoczko
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2013-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/2349/pdf
_version_ 1827324006657687552
author Matthew Housley
Heather M. Russell
Julianna Tymoczko
author_facet Matthew Housley
Heather M. Russell
Julianna Tymoczko
author_sort Matthew Housley
collection DOAJ
description The $A_2$-spider category encodes the representation theory of the $sl_3$ quantum group. Kuperberg (1996) introduced a combinatorial version of this category, wherein morphisms are represented by planar graphs called $\textit{webs}$ and the subset of $\textit{reduced webs}$ forms bases for morphism spaces. A great deal of recent interest has focused on the combinatorics of invariant webs for tensors powers of $V^+$, the standard representation of the quantum group. In particular, the invariant webs for the 3$n$th tensor power of $V^+$ correspond bijectively to $[n,n,n]$ standard Young tableaux. Kuperberg originally defined this map in terms of a graphical algorithm, and subsequent papers of Khovanov–Kuperberg (1999) and Tymoczko (2012) introduce algorithms for computing the inverse. The main result of this paper is a redefinition of Kuperberg's map through the representation theory of the symmetric group. In the classical limit, the space of invariant webs carries a symmetric group action. We use this structure in conjunction with Vogan's generalized tau-invariant and Kazhdan–Lusztig theory to show that Kuperberg's map is a direct analogue of the Robinson–Schensted correspondence.
first_indexed 2024-04-25T02:01:50Z
format Article
id doaj.art-6e38352011b141d38c2cba4258a2c65b
institution Directory Open Access Journal
issn 1365-8050
language English
last_indexed 2024-04-25T02:01:50Z
publishDate 2013-01-01
publisher Discrete Mathematics & Theoretical Computer Science
record_format Article
series Discrete Mathematics & Theoretical Computer Science
spelling doaj.art-6e38352011b141d38c2cba4258a2c65b2024-03-07T14:52:36ZengDiscrete Mathematics & Theoretical Computer ScienceDiscrete Mathematics & Theoretical Computer Science1365-80502013-01-01DMTCS Proceedings vol. AS,...Proceedings10.46298/dmtcs.23492349The Robinson―Schensted Correspondence and $A_2$-websMatthew Housley0Heather M. Russell1Julianna Tymoczko2Brigham Young UniversityUniversity of Southern CaliforniaSmith College [Northampton]The $A_2$-spider category encodes the representation theory of the $sl_3$ quantum group. Kuperberg (1996) introduced a combinatorial version of this category, wherein morphisms are represented by planar graphs called $\textit{webs}$ and the subset of $\textit{reduced webs}$ forms bases for morphism spaces. A great deal of recent interest has focused on the combinatorics of invariant webs for tensors powers of $V^+$, the standard representation of the quantum group. In particular, the invariant webs for the 3$n$th tensor power of $V^+$ correspond bijectively to $[n,n,n]$ standard Young tableaux. Kuperberg originally defined this map in terms of a graphical algorithm, and subsequent papers of Khovanov–Kuperberg (1999) and Tymoczko (2012) introduce algorithms for computing the inverse. The main result of this paper is a redefinition of Kuperberg's map through the representation theory of the symmetric group. In the classical limit, the space of invariant webs carries a symmetric group action. We use this structure in conjunction with Vogan's generalized tau-invariant and Kazhdan–Lusztig theory to show that Kuperberg's map is a direct analogue of the Robinson–Schensted correspondence.https://dmtcs.episciences.org/2349/pdfrobinson―schenstedweb basiskazhdan―lusztig theoryyoung tableau[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
spellingShingle Matthew Housley
Heather M. Russell
Julianna Tymoczko
The Robinson―Schensted Correspondence and $A_2$-webs
Discrete Mathematics & Theoretical Computer Science
robinson―schensted
web basis
kazhdan―lusztig theory
young tableau
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
title The Robinson―Schensted Correspondence and $A_2$-webs
title_full The Robinson―Schensted Correspondence and $A_2$-webs
title_fullStr The Robinson―Schensted Correspondence and $A_2$-webs
title_full_unstemmed The Robinson―Schensted Correspondence and $A_2$-webs
title_short The Robinson―Schensted Correspondence and $A_2$-webs
title_sort robinson schensted correspondence and a 2 webs
topic robinson―schensted
web basis
kazhdan―lusztig theory
young tableau
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
url https://dmtcs.episciences.org/2349/pdf
work_keys_str_mv AT matthewhousley therobinsonschenstedcorrespondenceanda2webs
AT heathermrussell therobinsonschenstedcorrespondenceanda2webs
AT juliannatymoczko therobinsonschenstedcorrespondenceanda2webs
AT matthewhousley robinsonschenstedcorrespondenceanda2webs
AT heathermrussell robinsonschenstedcorrespondenceanda2webs
AT juliannatymoczko robinsonschenstedcorrespondenceanda2webs