Simultaneous Optimization of Topology and Component Sizes for Double Planetary Gear Hybrid Powertrains

Hybrid powertrain technologies are successful in the passenger car market and have been actively developed in recent years. Optimal topology selection, component sizing, and controls are required for competitive hybrid vehicles, as multiple goals must be considered simultaneously: fuel efficiency, e...

Full description

Bibliographic Details
Main Authors: Weichao Zhuang, Xiaowu Zhang, Huei Peng, Liangmo Wang
Format: Article
Language:English
Published: MDPI AG 2016-05-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/9/6/411
Description
Summary:Hybrid powertrain technologies are successful in the passenger car market and have been actively developed in recent years. Optimal topology selection, component sizing, and controls are required for competitive hybrid vehicles, as multiple goals must be considered simultaneously: fuel efficiency, emissions, performance, and cost. Most of the previous studies explored these three design dimensions separately. In this paper, two novel frameworks combining these three design dimensions together are presented and compared. One approach is nested optimization which searches through the whole design space exhaustively. The second approach is called enhanced iterative optimization, which executes the topology optimization and component sizing alternately. A case study shows that the later method can converge to the global optimal design generated from the nested optimization, and is much more computationally efficient. In addition, we also address a known issue of optimal designs: their sensitivity to parameters, such as varying vehicle weight, which is a concern especially for the design of hybrid buses. Therefore, the iterative optimization process is applied to design a robust multi-mode hybrid electric bus under different loading scenarios as the final design challenge of this paper.
ISSN:1996-1073