Summary: | Food waste is a common global threat to the environment, agriculture, and society. In the present study, we used 30% food waste, mixed with 70% bio-fertilizers, and evaluated their ability to affect the growth of Chinese cabbage. The experiment was conducted using different concentrations of food waste to investigate their effect on Chinese cabbage growth, chlorophyll content, and mineral content. Leaf length, root length, and fresh and dry weight were significantly increased in plants treated with control fertilizer (CF) and fertilizer mixed with food waste (MF). However, high concentrations of food waste decreased the growth and biomass of Chinese cabbage due to salt content. Furthermore, higher chlorophyll content, transpiration efficiency, and photosynthetic rate were observed in CF- and MF-treated plants, while higher chlorophyll fluorescence was observed in the MF × 2 and MF × 6 treatments. Inductively coupled plasm mass spectrometry (ICP-MS) results showed an increase in potassium (K), calcium (Ca), phosphorous (P), and magnesium (Mg) contents in the MF and MF × 2 treatments, while higher sodium (Na) content was observed in the MF × 4 and MF × 6 treatments due to the high salt content found in food waste. The analysis of abscisic acid (ABA) showed that increasing amounts of food waste increase the endogenous ABA content, compromising the survival of plants. In conclusion, optimal amounts of food waste—up to MF and MF × 2—increase plant growth and provide an ecofriendly approach to be employed in the agriculture production system.
|