A Binary Machine Learning Cuckoo Search Algorithm Improved by a Local Search Operator for the Set-Union Knapsack Problem

Optimization techniques, specially metaheuristics, are constantly refined in order to decrease execution times, increase the quality of solutions, and address larger target cases. Hybridizing techniques are one of these strategies that are particularly noteworthy due to the breadth of applications....

Full description

Bibliographic Details
Main Authors: José García, José Lemus-Romani, Francisco Altimiras, Broderick Crawford, Ricardo Soto, Marcelo Becerra-Rozas, Paola Moraga, Alex Paz Becerra, Alvaro Peña Fritz, Jose-Miguel Rubio, Gino Astorga
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/20/2611
_version_ 1797513966446968832
author José García
José Lemus-Romani
Francisco Altimiras
Broderick Crawford
Ricardo Soto
Marcelo Becerra-Rozas
Paola Moraga
Alex Paz Becerra
Alvaro Peña Fritz
Jose-Miguel Rubio
Gino Astorga
author_facet José García
José Lemus-Romani
Francisco Altimiras
Broderick Crawford
Ricardo Soto
Marcelo Becerra-Rozas
Paola Moraga
Alex Paz Becerra
Alvaro Peña Fritz
Jose-Miguel Rubio
Gino Astorga
author_sort José García
collection DOAJ
description Optimization techniques, specially metaheuristics, are constantly refined in order to decrease execution times, increase the quality of solutions, and address larger target cases. Hybridizing techniques are one of these strategies that are particularly noteworthy due to the breadth of applications. In this article, a hybrid algorithm is proposed that integrates the k-means algorithm to generate a binary version of the cuckoo search technique, and this is strengthened by a local search operator. The binary cuckoo search algorithm is applied to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">NP</mi></semantics></math></inline-formula>-hard Set-Union Knapsack Problem. This problem has recently attracted great attention from the operational research community due to the breadth of its applications and the difficulty it presents in solving medium and large instances. Numerical experiments were conducted to gain insight into the contribution of the final results of the k-means technique and the local search operator. Furthermore, a comparison to state-of-the-art algorithms is made. The results demonstrate that the hybrid algorithm consistently produces superior results in the majority of the analyzed medium instances, and its performance is competitive, but degrades in large instances.
first_indexed 2024-03-10T06:24:59Z
format Article
id doaj.art-6e71ed41fcab43e48c8d239a09e3224c
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T06:24:59Z
publishDate 2021-10-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-6e71ed41fcab43e48c8d239a09e3224c2023-11-22T19:02:38ZengMDPI AGMathematics2227-73902021-10-01920261110.3390/math9202611A Binary Machine Learning Cuckoo Search Algorithm Improved by a Local Search Operator for the Set-Union Knapsack ProblemJosé García0José Lemus-Romani1Francisco Altimiras2Broderick Crawford3Ricardo Soto4Marcelo Becerra-Rozas5Paola Moraga6Alex Paz Becerra7Alvaro Peña Fritz8Jose-Miguel Rubio9Gino Astorga10Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, ChileEscuela de Construcción Civil, Pontificia Universidad Católica de Chile, Santiago 7820436, ChileFacultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500975, ChileEscuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, ChileEscuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, ChileEscuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, ChileEscuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, ChileEscuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, ChileEscuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, ChileFacultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O’Higgins Santiago, Metropolitana 8370993, ChileEscuela de Negocios Internacionales, Universidad de Valparaíso, Viña del Mar 2572048, ChileOptimization techniques, specially metaheuristics, are constantly refined in order to decrease execution times, increase the quality of solutions, and address larger target cases. Hybridizing techniques are one of these strategies that are particularly noteworthy due to the breadth of applications. In this article, a hybrid algorithm is proposed that integrates the k-means algorithm to generate a binary version of the cuckoo search technique, and this is strengthened by a local search operator. The binary cuckoo search algorithm is applied to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">NP</mi></semantics></math></inline-formula>-hard Set-Union Knapsack Problem. This problem has recently attracted great attention from the operational research community due to the breadth of its applications and the difficulty it presents in solving medium and large instances. Numerical experiments were conducted to gain insight into the contribution of the final results of the k-means technique and the local search operator. Furthermore, a comparison to state-of-the-art algorithms is made. The results demonstrate that the hybrid algorithm consistently produces superior results in the majority of the analyzed medium instances, and its performance is competitive, but degrades in large instances.https://www.mdpi.com/2227-7390/9/20/2611combinatorial optimizationmachine learningmetaheuristicsset-union knapsack
spellingShingle José García
José Lemus-Romani
Francisco Altimiras
Broderick Crawford
Ricardo Soto
Marcelo Becerra-Rozas
Paola Moraga
Alex Paz Becerra
Alvaro Peña Fritz
Jose-Miguel Rubio
Gino Astorga
A Binary Machine Learning Cuckoo Search Algorithm Improved by a Local Search Operator for the Set-Union Knapsack Problem
Mathematics
combinatorial optimization
machine learning
metaheuristics
set-union knapsack
title A Binary Machine Learning Cuckoo Search Algorithm Improved by a Local Search Operator for the Set-Union Knapsack Problem
title_full A Binary Machine Learning Cuckoo Search Algorithm Improved by a Local Search Operator for the Set-Union Knapsack Problem
title_fullStr A Binary Machine Learning Cuckoo Search Algorithm Improved by a Local Search Operator for the Set-Union Knapsack Problem
title_full_unstemmed A Binary Machine Learning Cuckoo Search Algorithm Improved by a Local Search Operator for the Set-Union Knapsack Problem
title_short A Binary Machine Learning Cuckoo Search Algorithm Improved by a Local Search Operator for the Set-Union Knapsack Problem
title_sort binary machine learning cuckoo search algorithm improved by a local search operator for the set union knapsack problem
topic combinatorial optimization
machine learning
metaheuristics
set-union knapsack
url https://www.mdpi.com/2227-7390/9/20/2611
work_keys_str_mv AT josegarcia abinarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT joselemusromani abinarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT franciscoaltimiras abinarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT broderickcrawford abinarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT ricardosoto abinarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT marcelobecerrarozas abinarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT paolamoraga abinarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT alexpazbecerra abinarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT alvaropenafritz abinarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT josemiguelrubio abinarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT ginoastorga abinarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT josegarcia binarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT joselemusromani binarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT franciscoaltimiras binarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT broderickcrawford binarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT ricardosoto binarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT marcelobecerrarozas binarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT paolamoraga binarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT alexpazbecerra binarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT alvaropenafritz binarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT josemiguelrubio binarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem
AT ginoastorga binarymachinelearningcuckoosearchalgorithmimprovedbyalocalsearchoperatorforthesetunionknapsackproblem