EEG—Single-Channel Envelope Synchronisation and Classification for Seizure Detection and Prediction

This paper tackles the complex issue of detecting and classifying epileptic seizures whilst maintaining the total calculations at a minimum. Where many systems depend on the coupling between multiple sources, leading to hundreds of combinations of electrodes, our method calculates the instantaneous...

Full description

Bibliographic Details
Main Authors: James Brian Romaine, Mario Pereira Martín, José Ramón Salvador Ortiz, José María Manzano Crespo
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Brain Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3425/11/4/516
_version_ 1797537190904856576
author James Brian Romaine
Mario Pereira Martín
José Ramón Salvador Ortiz
José María Manzano Crespo
author_facet James Brian Romaine
Mario Pereira Martín
José Ramón Salvador Ortiz
José María Manzano Crespo
author_sort James Brian Romaine
collection DOAJ
description This paper tackles the complex issue of detecting and classifying epileptic seizures whilst maintaining the total calculations at a minimum. Where many systems depend on the coupling between multiple sources, leading to hundreds of combinations of electrodes, our method calculates the instantaneous phase between non-identical upper and lower envelopes of a single-electroencephalography channel reducing the workload to the total number of electrode points. From over 600 h of simulations, our method shows a sensitivity and specificity of <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>100</mn><mo>%</mo></mrow></semantics></math></inline-formula> for high false-positive rates and <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>83</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>75</mn><mo>%</mo></mrow></semantics></math></inline-formula>, respectively, for moderate to low false positive rates, which compares well to both single- and multi-channel-based methods. Furthermore, pre-ictal variations in synchronisation were detected in over <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>90</mn><mo>%</mo></mrow></semantics></math></inline-formula> of patients implying a possible prediction system.
first_indexed 2024-03-10T12:12:34Z
format Article
id doaj.art-6e72983825654116a38706a7313a99e1
institution Directory Open Access Journal
issn 2076-3425
language English
last_indexed 2024-03-10T12:12:34Z
publishDate 2021-04-01
publisher MDPI AG
record_format Article
series Brain Sciences
spelling doaj.art-6e72983825654116a38706a7313a99e12023-11-21T16:07:43ZengMDPI AGBrain Sciences2076-34252021-04-0111451610.3390/brainsci11040516EEG—Single-Channel Envelope Synchronisation and Classification for Seizure Detection and PredictionJames Brian Romaine0Mario Pereira Martín1José Ramón Salvador Ortiz2José María Manzano Crespo3Departamento Ingenería, Universidad Loyola Andalucía, Dos Hermanas, 41704 Seville, SpainDepartamento Ingenería, Universidad Loyola Andalucía, Dos Hermanas, 41704 Seville, SpainDepartamento Ingenería, Universidad Loyola Andalucía, Dos Hermanas, 41704 Seville, SpainDepartamento Ingenería, Universidad Loyola Andalucía, Dos Hermanas, 41704 Seville, SpainThis paper tackles the complex issue of detecting and classifying epileptic seizures whilst maintaining the total calculations at a minimum. Where many systems depend on the coupling between multiple sources, leading to hundreds of combinations of electrodes, our method calculates the instantaneous phase between non-identical upper and lower envelopes of a single-electroencephalography channel reducing the workload to the total number of electrode points. From over 600 h of simulations, our method shows a sensitivity and specificity of <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>100</mn><mo>%</mo></mrow></semantics></math></inline-formula> for high false-positive rates and <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>83</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>75</mn><mo>%</mo></mrow></semantics></math></inline-formula>, respectively, for moderate to low false positive rates, which compares well to both single- and multi-channel-based methods. Furthermore, pre-ictal variations in synchronisation were detected in over <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>90</mn><mo>%</mo></mrow></semantics></math></inline-formula> of patients implying a possible prediction system.https://www.mdpi.com/2076-3425/11/4/516epilepsysynchronisationenvelopeDSPhilbert transformdetection
spellingShingle James Brian Romaine
Mario Pereira Martín
José Ramón Salvador Ortiz
José María Manzano Crespo
EEG—Single-Channel Envelope Synchronisation and Classification for Seizure Detection and Prediction
Brain Sciences
epilepsy
synchronisation
envelope
DSP
hilbert transform
detection
title EEG—Single-Channel Envelope Synchronisation and Classification for Seizure Detection and Prediction
title_full EEG—Single-Channel Envelope Synchronisation and Classification for Seizure Detection and Prediction
title_fullStr EEG—Single-Channel Envelope Synchronisation and Classification for Seizure Detection and Prediction
title_full_unstemmed EEG—Single-Channel Envelope Synchronisation and Classification for Seizure Detection and Prediction
title_short EEG—Single-Channel Envelope Synchronisation and Classification for Seizure Detection and Prediction
title_sort eeg single channel envelope synchronisation and classification for seizure detection and prediction
topic epilepsy
synchronisation
envelope
DSP
hilbert transform
detection
url https://www.mdpi.com/2076-3425/11/4/516
work_keys_str_mv AT jamesbrianromaine eegsinglechannelenvelopesynchronisationandclassificationforseizuredetectionandprediction
AT mariopereiramartin eegsinglechannelenvelopesynchronisationandclassificationforseizuredetectionandprediction
AT joseramonsalvadorortiz eegsinglechannelenvelopesynchronisationandclassificationforseizuredetectionandprediction
AT josemariamanzanocrespo eegsinglechannelenvelopesynchronisationandclassificationforseizuredetectionandprediction