The limit of vanishing viscosity for doubly nonlinear parabolic equations

We show that solutions of the doubly nonlinear parabolic equation \begin{equation*} \frac{\partial b(u)}{\partial t} - \epsilon \operatorname{div}(a(\nabla u)) + \operatorname{div}(f(u)) = g \end{equation*} converge in the limit $\epsilon \searrow 0$ of vanishing viscosity to an entropy so...

Full description

Bibliographic Details
Main Authors: Ales Matas, Jochen Merker
Format: Article
Language:English
Published: University of Szeged 2014-03-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=2470
_version_ 1797830650421575680
author Ales Matas
Jochen Merker
author_facet Ales Matas
Jochen Merker
author_sort Ales Matas
collection DOAJ
description We show that solutions of the doubly nonlinear parabolic equation \begin{equation*} \frac{\partial b(u)}{\partial t} - \epsilon \operatorname{div}(a(\nabla u)) + \operatorname{div}(f(u)) = g \end{equation*} converge in the limit $\epsilon \searrow 0$ of vanishing viscosity to an entropy solution of the doubly nonlinear hyperbolic equation \begin{equation*} \frac{\partial b(u)}{\partial t} + \operatorname{div}(f(u)) = g \,. \end{equation*} The difficulty here lies in the fact that the functions $a$ and $b$ specifying the diffusion are nonlinear.
first_indexed 2024-04-09T13:39:27Z
format Article
id doaj.art-6e747080ddd84fa8b473fef78512b96a
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:39:27Z
publishDate 2014-03-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-6e747080ddd84fa8b473fef78512b96a2023-05-09T07:53:03ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752014-03-012014811410.14232/ejqtde.2014.1.82470The limit of vanishing viscosity for doubly nonlinear parabolic equationsAles Matas0Jochen Merker1University of West-Bohemia, Department of Mathematics, Univerzitni 22, CZ - 306 14 Pilsen, Czech RepublicUniversity of Rostock, Ulmenstr. 69 (Haus 3), D-18051 Rostock, GermanyWe show that solutions of the doubly nonlinear parabolic equation \begin{equation*} \frac{\partial b(u)}{\partial t} - \epsilon \operatorname{div}(a(\nabla u)) + \operatorname{div}(f(u)) = g \end{equation*} converge in the limit $\epsilon \searrow 0$ of vanishing viscosity to an entropy solution of the doubly nonlinear hyperbolic equation \begin{equation*} \frac{\partial b(u)}{\partial t} + \operatorname{div}(f(u)) = g \,. \end{equation*} The difficulty here lies in the fact that the functions $a$ and $b$ specifying the diffusion are nonlinear.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=2470vanishing viscositydoubly nonlinear evolution equationsconservation lawquasilineardegenerate
spellingShingle Ales Matas
Jochen Merker
The limit of vanishing viscosity for doubly nonlinear parabolic equations
Electronic Journal of Qualitative Theory of Differential Equations
vanishing viscosity
doubly nonlinear evolution equations
conservation law
quasilinear
degenerate
title The limit of vanishing viscosity for doubly nonlinear parabolic equations
title_full The limit of vanishing viscosity for doubly nonlinear parabolic equations
title_fullStr The limit of vanishing viscosity for doubly nonlinear parabolic equations
title_full_unstemmed The limit of vanishing viscosity for doubly nonlinear parabolic equations
title_short The limit of vanishing viscosity for doubly nonlinear parabolic equations
title_sort limit of vanishing viscosity for doubly nonlinear parabolic equations
topic vanishing viscosity
doubly nonlinear evolution equations
conservation law
quasilinear
degenerate
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=2470
work_keys_str_mv AT alesmatas thelimitofvanishingviscosityfordoublynonlinearparabolicequations
AT jochenmerker thelimitofvanishingviscosityfordoublynonlinearparabolicequations
AT alesmatas limitofvanishingviscosityfordoublynonlinearparabolicequations
AT jochenmerker limitofvanishingviscosityfordoublynonlinearparabolicequations