An Optimization Approach of Deriving Bounds between Entropy and Error from Joint Distribution: Case Study for Binary Classifications
In this work, we propose a new approach of deriving the bounds between entropy and error from a joint distribution through an optimization means. The specific case study is given on binary classifications. Two basic types of classification errors are investigated, namely, the Bayesian and non-Bayesi...
Hauptverfasser: | Bao-Gang Hu, Hong-Jie Xing |
---|---|
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
MDPI AG
2016-02-01
|
Schriftenreihe: | Entropy |
Schlagworte: | |
Online Zugang: | http://www.mdpi.com/1099-4300/18/2/59 |
Ähnliche Einträge
Ähnliche Einträge
-
Theoretical Bounds on Performance in Threshold Group Testing Schemes
von: Jin-Taek Seong
Veröffentlicht: (2020-04-01) -
Analysis of the Upper Bound of Dynamic Error Obtained during Temperature Measurements
von: Krzysztof Tomczyk, et al.
Veröffentlicht: (2022-10-01) -
On the lower bound error for discrete maps using associative property
von: E.G. Nepomuceno, et al.
Veröffentlicht: (2017-01-01) -
Computable error bounds with improved applicability conditions for collocation methods
von: A. H. Ahmed
Veröffentlicht: (1998-01-01) -
On approximating the error function
von: Zhen-Hang Yang, et al.
Veröffentlicht: (2016-11-01)