An Optimization Approach of Deriving Bounds between Entropy and Error from Joint Distribution: Case Study for Binary Classifications
In this work, we propose a new approach of deriving the bounds between entropy and error from a joint distribution through an optimization means. The specific case study is given on binary classifications. Two basic types of classification errors are investigated, namely, the Bayesian and non-Bayesi...
主要な著者: | Bao-Gang Hu, Hong-Jie Xing |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
MDPI AG
2016-02-01
|
シリーズ: | Entropy |
主題: | |
オンライン・アクセス: | http://www.mdpi.com/1099-4300/18/2/59 |
類似資料
-
Theoretical Bounds on Performance in Threshold Group Testing Schemes
著者:: Jin-Taek Seong
出版事項: (2020-04-01) -
Analysis of the Upper Bound of Dynamic Error Obtained during Temperature Measurements
著者:: Krzysztof Tomczyk, 等
出版事項: (2022-10-01) -
On the lower bound error for discrete maps using associative property
著者:: E.G. Nepomuceno, 等
出版事項: (2017-01-01) -
Computable error bounds with improved applicability conditions for collocation methods
著者:: A. H. Ahmed
出版事項: (1998-01-01) -
On approximating the error function
著者:: Zhen-Hang Yang, 等
出版事項: (2016-11-01)