An Optimization Approach of Deriving Bounds between Entropy and Error from Joint Distribution: Case Study for Binary Classifications

In this work, we propose a new approach of deriving the bounds between entropy and error from a joint distribution through an optimization means. The specific case study is given on binary classifications. Two basic types of classification errors are investigated, namely, the Bayesian and non-Bayesi...

詳細記述

書誌詳細
主要な著者: Bao-Gang Hu, Hong-Jie Xing
フォーマット: 論文
言語:English
出版事項: MDPI AG 2016-02-01
シリーズ:Entropy
主題:
オンライン・アクセス:http://www.mdpi.com/1099-4300/18/2/59

類似資料