An Optimization Approach of Deriving Bounds between Entropy and Error from Joint Distribution: Case Study for Binary Classifications

In this work, we propose a new approach of deriving the bounds between entropy and error from a joint distribution through an optimization means. The specific case study is given on binary classifications. Two basic types of classification errors are investigated, namely, the Bayesian and non-Bayesi...

全面介绍

书目详细资料
Main Authors: Bao-Gang Hu, Hong-Jie Xing
格式: 文件
语言:English
出版: MDPI AG 2016-02-01
丛编:Entropy
主题:
在线阅读:http://www.mdpi.com/1099-4300/18/2/59

相似书籍