An Optimization Approach of Deriving Bounds between Entropy and Error from Joint Distribution: Case Study for Binary Classifications
In this work, we propose a new approach of deriving the bounds between entropy and error from a joint distribution through an optimization means. The specific case study is given on binary classifications. Two basic types of classification errors are investigated, namely, the Bayesian and non-Bayesi...
Main Authors: | Bao-Gang Hu, Hong-Jie Xing |
---|---|
格式: | 文件 |
语言: | English |
出版: |
MDPI AG
2016-02-01
|
丛编: | Entropy |
主题: | |
在线阅读: | http://www.mdpi.com/1099-4300/18/2/59 |
相似书籍
-
Theoretical Bounds on Performance in Threshold Group Testing Schemes
由: Jin-Taek Seong
出版: (2020-04-01) -
Analysis of the Upper Bound of Dynamic Error Obtained during Temperature Measurements
由: Krzysztof Tomczyk, et al.
出版: (2022-10-01) -
On the lower bound error for discrete maps using associative property
由: E.G. Nepomuceno, et al.
出版: (2017-01-01) -
Computable error bounds with improved applicability conditions for collocation methods
由: A. H. Ahmed
出版: (1998-01-01) -
On approximating the error function
由: Zhen-Hang Yang, et al.
出版: (2016-11-01)