Optimal Preventive Maintenance Scheduling for Wind Turbines under Condition Monitoring

Renewable energy sources, such as wind and solar, are positioned to play a pivotal role in future energy systems. In this paper, we propose a mathematical model for calculating and regularly updating the next preventive maintenance plan for a wind farm. Our optimization criterion considers various f...

Full description

Bibliographic Details
Main Authors: Quanjiang Yu, Pramod Bangalore, Sara Fogelström, Serik Sagitov
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/17/2/280
Description
Summary:Renewable energy sources, such as wind and solar, are positioned to play a pivotal role in future energy systems. In this paper, we propose a mathematical model for calculating and regularly updating the next preventive maintenance plan for a wind farm. Our optimization criterion considers various factors, including the current ages of key components, major maintenance costs, eventual energy production losses, and available data monitoring the condition of the wind turbines. Employing Cox proportional hazards analysis, we develop a comprehensive approach that accounts for the current ages of critical components, significant maintenance costs, potential energy production losses, and data collected from monitoring the condition of wind turbines. We illustrate the effectiveness of our approach through a case study based on data collected from multiple wind farms in Sweden. Our results demonstrate that preventive maintenance planning yields positive effects, particularly when the wind turbine components in question have significantly shorter lifespans than the turbine itself.
ISSN:1996-1073