Nitrite regeneration in the oligotrophic Atlantic Ocean

<p>The recycling of scarce nutrient resources in the sunlit open ocean is crucial to ecosystem function. Nitrification directs ammonium (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overf...

Full description

Bibliographic Details
Main Authors: D. R. Clark, A. P. Rees, C. M. Ferrera, L. Al-Moosawi, P. J. Somerfield, C. Harris, G. D. Quartly, S. Goult, G. Tarran, G. Lessin
Format: Article
Language:English
Published: Copernicus Publications 2022-03-01
Series:Biogeosciences
Online Access:https://bg.copernicus.org/articles/19/1355/2022/bg-19-1355-2022.pdf
Description
Summary:<p>The recycling of scarce nutrient resources in the sunlit open ocean is crucial to ecosystem function. Nitrification directs ammonium (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8aeb386a576ed6c8280ae774099f80e4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-1355-2022-ie00001.svg" width="24pt" height="15pt" src="bg-19-1355-2022-ie00001.png"/></svg:svg></span></span>) derived from organic matter decomposition towards the regeneration of nitrate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="4c315b3ea451cf26923ad12993612b33"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-1355-2022-ie00002.svg" width="25pt" height="16pt" src="bg-19-1355-2022-ie00002.png"/></svg:svg></span></span>), an important resource for photosynthetic primary producers. However, the technical challenge of making nitrification rate measurements in oligotrophic conditions combined with the remote nature of these environments means that data availability, and the understanding that provides, is limited. This study reports nitrite (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="77e75b8e3421a260344892322cb22e26"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-1355-2022-ie00003.svg" width="25pt" height="16pt" src="bg-19-1355-2022-ie00003.png"/></svg:svg></span></span>) regeneration rate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">R</mi><mrow><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="bdcdb6773c80e521977273c3fa58b8fa"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-1355-2022-ie00004.svg" width="25pt" height="14pt" src="bg-19-1355-2022-ie00004.png"/></svg:svg></span></span> – the first product of nitrification derived from <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="68d940fa21d9c6691de36bd82f3e56d8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-1355-2022-ie00005.svg" width="24pt" height="15pt" src="bg-19-1355-2022-ie00005.png"/></svg:svg></span></span> oxidation) over a 13 000 km transect within the photic zone of the Atlantic Ocean. These measurements, at relatively high resolution (order 300 km), permit the examination of interactions between <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">R</mi><mrow><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d4106037c9765bb30f11f9d226356ad5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-1355-2022-ie00006.svg" width="25pt" height="14pt" src="bg-19-1355-2022-ie00006.png"/></svg:svg></span></span> and environmental conditions that may warrant explicit development in model descriptions. At all locations we report measurable <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">R</mi><mrow><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="2f04fa6ccefaeeab34bc5ecc7d03b90b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-1355-2022-ie00007.svg" width="25pt" height="14pt" src="bg-19-1355-2022-ie00007.png"/></svg:svg></span></span> with significant variability between and within Atlantic provinces. Statistical analysis indicated significant correlative structure between <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">R</mi><mrow><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d4240575f7d4ba86cccd3a3046a9fbe1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-1355-2022-ie00008.svg" width="25pt" height="14pt" src="bg-19-1355-2022-ie00008.png"/></svg:svg></span></span> and ecosystem variables, explaining <span class="inline-formula">∼65</span> % of the data variability. Differences between sampling depths were of the same magnitude as or greater than horizontally resolved differences, identifying distinct biogeochemical niches between depth horizons. The best overall match between <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">R</mi><mrow><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c5a9928ef970c56928fd055f2369af9f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-1355-2022-ie00009.svg" width="25pt" height="14pt" src="bg-19-1355-2022-ie00009.png"/></svg:svg></span></span> and environmental variables combined chlorophyll-<span class="inline-formula"><i>a</i></span> concentration, light-phase duration, and silicate concentration (representing a short-term tracer of water column physical instability). On this basis we hypothesize that <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">R</mi><mrow><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="f74951ffc81a2974b1431ad01b71882c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-1355-2022-ie00010.svg" width="25pt" height="14pt" src="bg-19-1355-2022-ie00010.png"/></svg:svg></span></span> is related to the short-term autotrophic production and heterotrophic decomposition of dissolved organic nitrogen (DON), which regenerates <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="9d8f7ee8bf88d657d75cdcf077dbe3e2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-1355-2022-ie00011.svg" width="24pt" height="15pt" src="bg-19-1355-2022-ie00011.png"/></svg:svg></span></span> and supports <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="cb88f58b3b25b473f7c5a29ace587a7f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-1355-2022-ie00012.svg" width="24pt" height="15pt" src="bg-19-1355-2022-ie00012.png"/></svg:svg></span></span> oxidation. However, this did not explain the observation that <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">R</mi><mrow><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="65adeac5af3ccdfe2033e0c0be1d916d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-1355-2022-ie00013.svg" width="25pt" height="14pt" src="bg-19-1355-2022-ie00013.png"/></svg:svg></span></span> in the deep euphotic zone was significantly greater in the Southern Hemisphere compared to the Northern Hemisphere. We present the complimentary hypothesis that observations reflect the difference in DON concentration supplied by lateral transport into the gyre interior from the Atlantic's eastern boundary upwelling ecosystems.</p>
ISSN:1726-4170
1726-4189