Optimised weight programming for analogue memory-based deep neural networks

Device-level complexity represents a big shortcoming for the hardware realization of analogue memory-based deep neural networks. Mackin et al. report a generalized computational framework, translating software-trained weights into analogue hardware weights, to minimise inference accuracy degradation...

Full description

Bibliographic Details
Main Authors: Charles Mackin, Malte J. Rasch, An Chen, Jonathan Timcheck, Robert L. Bruce, Ning Li, Pritish Narayanan, Stefano Ambrogio, Manuel Le Gallo, S. R. Nandakumar, Andrea Fasoli, Jose Luquin, Alexander Friz, Abu Sebastian, Hsinyu Tsai, Geoffrey W. Burr
Format: Article
Language:English
Published: Nature Portfolio 2022-06-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-022-31405-1
_version_ 1828426708482523136
author Charles Mackin
Malte J. Rasch
An Chen
Jonathan Timcheck
Robert L. Bruce
Ning Li
Pritish Narayanan
Stefano Ambrogio
Manuel Le Gallo
S. R. Nandakumar
Andrea Fasoli
Jose Luquin
Alexander Friz
Abu Sebastian
Hsinyu Tsai
Geoffrey W. Burr
author_facet Charles Mackin
Malte J. Rasch
An Chen
Jonathan Timcheck
Robert L. Bruce
Ning Li
Pritish Narayanan
Stefano Ambrogio
Manuel Le Gallo
S. R. Nandakumar
Andrea Fasoli
Jose Luquin
Alexander Friz
Abu Sebastian
Hsinyu Tsai
Geoffrey W. Burr
author_sort Charles Mackin
collection DOAJ
description Device-level complexity represents a big shortcoming for the hardware realization of analogue memory-based deep neural networks. Mackin et al. report a generalized computational framework, translating software-trained weights into analogue hardware weights, to minimise inference accuracy degradation.
first_indexed 2024-12-10T16:50:21Z
format Article
id doaj.art-6ea0ca917cd64bd384362f7d3c473ddb
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-12-10T16:50:21Z
publishDate 2022-06-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-6ea0ca917cd64bd384362f7d3c473ddb2022-12-22T01:40:55ZengNature PortfolioNature Communications2041-17232022-06-0113111210.1038/s41467-022-31405-1Optimised weight programming for analogue memory-based deep neural networksCharles Mackin0Malte J. Rasch1An Chen2Jonathan Timcheck3Robert L. Bruce4Ning Li5Pritish Narayanan6Stefano Ambrogio7Manuel Le Gallo8S. R. Nandakumar9Andrea Fasoli10Jose Luquin11Alexander Friz12Abu Sebastian13Hsinyu Tsai14Geoffrey W. Burr15IBM Research–AlmadenIBM Research–Yorktown HeightsIBM Research–AlmadenStanford UniversityIBM Research–Yorktown HeightsIBM Research–Yorktown HeightsIBM Research–AlmadenIBM Research–AlmadenIBM Research–ZurichIBM Research–ZurichIBM Research–AlmadenIBM Research–AlmadenIBM Research–AlmadenIBM Research–ZurichIBM Research–AlmadenIBM Research–AlmadenDevice-level complexity represents a big shortcoming for the hardware realization of analogue memory-based deep neural networks. Mackin et al. report a generalized computational framework, translating software-trained weights into analogue hardware weights, to minimise inference accuracy degradation.https://doi.org/10.1038/s41467-022-31405-1
spellingShingle Charles Mackin
Malte J. Rasch
An Chen
Jonathan Timcheck
Robert L. Bruce
Ning Li
Pritish Narayanan
Stefano Ambrogio
Manuel Le Gallo
S. R. Nandakumar
Andrea Fasoli
Jose Luquin
Alexander Friz
Abu Sebastian
Hsinyu Tsai
Geoffrey W. Burr
Optimised weight programming for analogue memory-based deep neural networks
Nature Communications
title Optimised weight programming for analogue memory-based deep neural networks
title_full Optimised weight programming for analogue memory-based deep neural networks
title_fullStr Optimised weight programming for analogue memory-based deep neural networks
title_full_unstemmed Optimised weight programming for analogue memory-based deep neural networks
title_short Optimised weight programming for analogue memory-based deep neural networks
title_sort optimised weight programming for analogue memory based deep neural networks
url https://doi.org/10.1038/s41467-022-31405-1
work_keys_str_mv AT charlesmackin optimisedweightprogrammingforanaloguememorybaseddeepneuralnetworks
AT maltejrasch optimisedweightprogrammingforanaloguememorybaseddeepneuralnetworks
AT anchen optimisedweightprogrammingforanaloguememorybaseddeepneuralnetworks
AT jonathantimcheck optimisedweightprogrammingforanaloguememorybaseddeepneuralnetworks
AT robertlbruce optimisedweightprogrammingforanaloguememorybaseddeepneuralnetworks
AT ningli optimisedweightprogrammingforanaloguememorybaseddeepneuralnetworks
AT pritishnarayanan optimisedweightprogrammingforanaloguememorybaseddeepneuralnetworks
AT stefanoambrogio optimisedweightprogrammingforanaloguememorybaseddeepneuralnetworks
AT manuellegallo optimisedweightprogrammingforanaloguememorybaseddeepneuralnetworks
AT srnandakumar optimisedweightprogrammingforanaloguememorybaseddeepneuralnetworks
AT andreafasoli optimisedweightprogrammingforanaloguememorybaseddeepneuralnetworks
AT joseluquin optimisedweightprogrammingforanaloguememorybaseddeepneuralnetworks
AT alexanderfriz optimisedweightprogrammingforanaloguememorybaseddeepneuralnetworks
AT abusebastian optimisedweightprogrammingforanaloguememorybaseddeepneuralnetworks
AT hsinyutsai optimisedweightprogrammingforanaloguememorybaseddeepneuralnetworks
AT geoffreywburr optimisedweightprogrammingforanaloguememorybaseddeepneuralnetworks