Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma

Anterior segment optical coherence tomography (AS-OCT) allows the explore not only the anterior chamber but also the front part of the vitreous cavity. Our cross-sectional single-centre study investigated whether AS-OCT can distinguish between vitreous involvement due to vitreoretinal lymphoma (VRL)...

Full description

Bibliographic Details
Main Authors: Fabrizio Gozzi, Marco Bertolini, Pietro Gentile, Laura Verzellesi, Valeria Trojani, Luca De Simone, Elena Bolletta, Valentina Mastrofilippo, Enrico Farnetti, Davide Nicoli, Stefania Croci, Lucia Belloni, Alessandro Zerbini, Chantal Adani, Michele De Maria, Areti Kosmarikou, Marco Vecchi, Alessandro Invernizzi, Fiorella Ilariucci, Magda Zanelli, Mauro Iori, Luca Cimino
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Diagnostics
Subjects:
Online Access:https://www.mdpi.com/2075-4418/13/14/2451
_version_ 1797589662200496128
author Fabrizio Gozzi
Marco Bertolini
Pietro Gentile
Laura Verzellesi
Valeria Trojani
Luca De Simone
Elena Bolletta
Valentina Mastrofilippo
Enrico Farnetti
Davide Nicoli
Stefania Croci
Lucia Belloni
Alessandro Zerbini
Chantal Adani
Michele De Maria
Areti Kosmarikou
Marco Vecchi
Alessandro Invernizzi
Fiorella Ilariucci
Magda Zanelli
Mauro Iori
Luca Cimino
author_facet Fabrizio Gozzi
Marco Bertolini
Pietro Gentile
Laura Verzellesi
Valeria Trojani
Luca De Simone
Elena Bolletta
Valentina Mastrofilippo
Enrico Farnetti
Davide Nicoli
Stefania Croci
Lucia Belloni
Alessandro Zerbini
Chantal Adani
Michele De Maria
Areti Kosmarikou
Marco Vecchi
Alessandro Invernizzi
Fiorella Ilariucci
Magda Zanelli
Mauro Iori
Luca Cimino
author_sort Fabrizio Gozzi
collection DOAJ
description Anterior segment optical coherence tomography (AS-OCT) allows the explore not only the anterior chamber but also the front part of the vitreous cavity. Our cross-sectional single-centre study investigated whether AS-OCT can distinguish between vitreous involvement due to vitreoretinal lymphoma (VRL) and vitritis in uveitis. We studied AS-OCT images from 28 patients (11 with biopsy-proven VRL and 17 with differential diagnosis uveitis) using publicly available radiomics software written in MATLAB. Patients were divided into two balanced groups: training and testing. Overall, 3260/3705 (88%) AS-OCT images met our defined quality criteria, making them eligible for analysis. We studied five different sets of grey-level samplings (16, 32, 64, 128, and 256 levels), finding that 128 grey levels performed the best. We selected the five most effective radiomic features ranked by the ability to predict the class (VRL or uveitis). We built a classification model using the xgboost python function; through our model, 87% of eyes were correctly diagnosed as VRL or uveitis, regardless of exam technique or lens status. Areas under the receiver operating characteristic curves (AUC) in the 128 grey-level model were 0.95 [CI 0.94, 0.96] and 0.84 for training and testing datasets, respectively. This preliminary retrospective study highlights how AS-OCT can support ophthalmologists when there is clinical suspicion of VRL.
first_indexed 2024-03-11T01:09:43Z
format Article
id doaj.art-6ea7407fb1464dd28a9ef8b45c366d7e
institution Directory Open Access Journal
issn 2075-4418
language English
last_indexed 2024-03-11T01:09:43Z
publishDate 2023-07-01
publisher MDPI AG
record_format Article
series Diagnostics
spelling doaj.art-6ea7407fb1464dd28a9ef8b45c366d7e2023-11-18T18:59:02ZengMDPI AGDiagnostics2075-44182023-07-011314245110.3390/diagnostics13142451Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal LymphomaFabrizio Gozzi0Marco Bertolini1Pietro Gentile2Laura Verzellesi3Valeria Trojani4Luca De Simone5Elena Bolletta6Valentina Mastrofilippo7Enrico Farnetti8Davide Nicoli9Stefania Croci10Lucia Belloni11Alessandro Zerbini12Chantal Adani13Michele De Maria14Areti Kosmarikou15Marco Vecchi16Alessandro Invernizzi17Fiorella Ilariucci18Magda Zanelli19Mauro Iori20Luca Cimino21Ocular Immunology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalyMedical Physics Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalyOcular Immunology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalyMedical Physics Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalyMedical Physics Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalyOcular Immunology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalyOcular Immunology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalyOcular Immunology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalyMolecular Pathology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalyMolecular Pathology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalyClinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalyClinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalyClinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalyOcular Immunology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalyOphthalmology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalyOphthalmology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalyOphthalmology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalyEye Clinic, Luigi Sacco Hospital, Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, ItalyHematology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalySurgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, ItalyMedical Physics Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalyOcular Immunology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, ItalyAnterior segment optical coherence tomography (AS-OCT) allows the explore not only the anterior chamber but also the front part of the vitreous cavity. Our cross-sectional single-centre study investigated whether AS-OCT can distinguish between vitreous involvement due to vitreoretinal lymphoma (VRL) and vitritis in uveitis. We studied AS-OCT images from 28 patients (11 with biopsy-proven VRL and 17 with differential diagnosis uveitis) using publicly available radiomics software written in MATLAB. Patients were divided into two balanced groups: training and testing. Overall, 3260/3705 (88%) AS-OCT images met our defined quality criteria, making them eligible for analysis. We studied five different sets of grey-level samplings (16, 32, 64, 128, and 256 levels), finding that 128 grey levels performed the best. We selected the five most effective radiomic features ranked by the ability to predict the class (VRL or uveitis). We built a classification model using the xgboost python function; through our model, 87% of eyes were correctly diagnosed as VRL or uveitis, regardless of exam technique or lens status. Areas under the receiver operating characteristic curves (AUC) in the 128 grey-level model were 0.95 [CI 0.94, 0.96] and 0.84 for training and testing datasets, respectively. This preliminary retrospective study highlights how AS-OCT can support ophthalmologists when there is clinical suspicion of VRL.https://www.mdpi.com/2075-4418/13/14/2451anterior segment optical coherence tomographyAS-OCTvitreoretinal lymphomaVRLradiomic featuresmachine learning
spellingShingle Fabrizio Gozzi
Marco Bertolini
Pietro Gentile
Laura Verzellesi
Valeria Trojani
Luca De Simone
Elena Bolletta
Valentina Mastrofilippo
Enrico Farnetti
Davide Nicoli
Stefania Croci
Lucia Belloni
Alessandro Zerbini
Chantal Adani
Michele De Maria
Areti Kosmarikou
Marco Vecchi
Alessandro Invernizzi
Fiorella Ilariucci
Magda Zanelli
Mauro Iori
Luca Cimino
Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma
Diagnostics
anterior segment optical coherence tomography
AS-OCT
vitreoretinal lymphoma
VRL
radiomic features
machine learning
title Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma
title_full Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma
title_fullStr Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma
title_full_unstemmed Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma
title_short Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma
title_sort artificial intelligence assisted processing of anterior segment oct images in the diagnosis of vitreoretinal lymphoma
topic anterior segment optical coherence tomography
AS-OCT
vitreoretinal lymphoma
VRL
radiomic features
machine learning
url https://www.mdpi.com/2075-4418/13/14/2451
work_keys_str_mv AT fabriziogozzi artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT marcobertolini artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT pietrogentile artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT lauraverzellesi artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT valeriatrojani artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT lucadesimone artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT elenabolletta artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT valentinamastrofilippo artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT enricofarnetti artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT davidenicoli artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT stefaniacroci artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT luciabelloni artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT alessandrozerbini artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT chantaladani artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT micheledemaria artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT aretikosmarikou artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT marcovecchi artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT alessandroinvernizzi artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT fiorellailariucci artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT magdazanelli artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT mauroiori artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT lucacimino artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma