Calculations in New Sequence Spaces and Application to Statistical Convergence

In this paper we recall recent results that are direct consequences of the fact that (w∞(λ) ,w∞(λ)) is a Banach algebra. Then we define the set Wτ = Dτw∞ and characterize the sets Wτ (A) where A is either of the operators &am...

Full description

Bibliographic Details
Main Authors: BRUNO DE MALAFOSSE, VLADIMIR RAKOEVIC
Format: Article
Language:English
Published: Universidad de La Frontera 2010-01-01
Series:Cubo
Subjects:
Online Access:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300008
Description
Summary:In this paper we recall recent results that are direct consequences of the fact that (w&#8734;(&#955;) ,w&#8734;(&#955;)) is a Banach algebra. Then we define the set W&#964; = D&#964;w&#8734; and characterize the sets W&#964; (A) where A is either of the operators &#916;, &#8721;, &#916;(&#955;), or C(&#955;). Afterwardswe consider the sets [A1,A2]W&#964; of all sequences X such that A1 (&#955;)(|A2(&#956;) X|) &#8712; W&#964; where A1 and A2 are of the form C(&#958;), C+ (&#958;), &#916;(&#958;), or &#916;+ (&#958;) and it is given necessary conditions to get |A1 (&#955;),A2(&#956;)| W&#964; in the form W&#958;. Finally we apply the previous results to statistical convergence. So we have conditions to have xk &#8594; L(S(A)) where A is either of the infinite matrices D1/&#964;C(&#955;)C(&#956;), D1/&#964;&#916;(&#955;)&#916;(&#956;), D1/&#964;&#916;(&#955;)C(&#956;). We also give conditions to have xk &#8594; 0(S(A)) where A is either of the operators D1/&#964;C+ (&#955;)&#916;(&#956;), D1/&#964;C(&#955;)C(&#956;), D1/&#964;C+ (&#955;)C+(&#956;), or D1/&#964;&#916;(&#955;)C+(&#956;).<br>Recordamos resultados recientes que son consecuencia directa del hecho de que (w&#8734;(&#955;), w&#8734;(&#955;)) es una algebra de Banach. Entonces nosotros definimos el conjunto W&#964; = D&#964;w&#8734;y caracterizamos los conjuntos W&#964; (A) donde A es uno de los siguientes operadores &#916;, &#8721;, &#916;(&#955;), o C(&#955;). Después consideramos los conjuntos[A1,A2]W&#964; de todas las sucesiones X tal que A1 (&#955;)(|A2(&#956;) X|) &#8712; W&#964; dondeA1 y A2 son de la forma C(&#958;), C+ (&#958;), &#916;(&#958;), or &#916;+ (&#958;) y son dadas condiciones necesarias para obtener |A1 (&#955;),A2(&#956;)| W&#964; en la forma W&#958;. Finalmente, aplicamos los resultados previos para tener xk &#8594; L(S(A)) donde A es una de las matrices infinitas D1/&#964;C(&#955;)C(&#956;), D1/&#964;&#916;(&#955;)&#916;(&#956;), D1/&#964;&#916;(&#955;)C(&#956;) . Nosotros también damos condiciones para tener xk &#8594; 0(S(A)) donde A es uno de los operadores D1/&#964;C+ (&#955;)&#916;(&#956;), D1/&#964;C(&#955;)C(&#956;), D1/&#964;C+ (&#955;)C+(&#956;), o D1/&#964;&#916;(&#955;)C+(&#956;).
ISSN:0716-7776
0719-0646