Calculations in New Sequence Spaces and Application to Statistical Convergence

In this paper we recall recent results that are direct consequences of the fact that (w∞(λ) ,w∞(λ)) is a Banach algebra. Then we define the set Wτ = Dτw∞ and characterize the sets Wτ (A) where A is either of the operators &am...

Full description

Bibliographic Details
Main Authors: BRUNO DE MALAFOSSE, VLADIMIR RAKOEVIC
Format: Article
Language:English
Published: Universidad de La Frontera 2010-01-01
Series:Cubo
Subjects:
Online Access:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300008
_version_ 1818884182913318912
author BRUNO DE MALAFOSSE
VLADIMIR RAKOEVIC
author_facet BRUNO DE MALAFOSSE
VLADIMIR RAKOEVIC
author_sort BRUNO DE MALAFOSSE
collection DOAJ
description In this paper we recall recent results that are direct consequences of the fact that (w&#8734;(&#955;) ,w&#8734;(&#955;)) is a Banach algebra. Then we define the set W&#964; = D&#964;w&#8734; and characterize the sets W&#964; (A) where A is either of the operators &#916;, &#8721;, &#916;(&#955;), or C(&#955;). Afterwardswe consider the sets [A1,A2]W&#964; of all sequences X such that A1 (&#955;)(|A2(&#956;) X|) &#8712; W&#964; where A1 and A2 are of the form C(&#958;), C+ (&#958;), &#916;(&#958;), or &#916;+ (&#958;) and it is given necessary conditions to get |A1 (&#955;),A2(&#956;)| W&#964; in the form W&#958;. Finally we apply the previous results to statistical convergence. So we have conditions to have xk &#8594; L(S(A)) where A is either of the infinite matrices D1/&#964;C(&#955;)C(&#956;), D1/&#964;&#916;(&#955;)&#916;(&#956;), D1/&#964;&#916;(&#955;)C(&#956;). We also give conditions to have xk &#8594; 0(S(A)) where A is either of the operators D1/&#964;C+ (&#955;)&#916;(&#956;), D1/&#964;C(&#955;)C(&#956;), D1/&#964;C+ (&#955;)C+(&#956;), or D1/&#964;&#916;(&#955;)C+(&#956;).<br>Recordamos resultados recientes que son consecuencia directa del hecho de que (w&#8734;(&#955;), w&#8734;(&#955;)) es una algebra de Banach. Entonces nosotros definimos el conjunto W&#964; = D&#964;w&#8734;y caracterizamos los conjuntos W&#964; (A) donde A es uno de los siguientes operadores &#916;, &#8721;, &#916;(&#955;), o C(&#955;). Después consideramos los conjuntos[A1,A2]W&#964; de todas las sucesiones X tal que A1 (&#955;)(|A2(&#956;) X|) &#8712; W&#964; dondeA1 y A2 son de la forma C(&#958;), C+ (&#958;), &#916;(&#958;), or &#916;+ (&#958;) y son dadas condiciones necesarias para obtener |A1 (&#955;),A2(&#956;)| W&#964; en la forma W&#958;. Finalmente, aplicamos los resultados previos para tener xk &#8594; L(S(A)) donde A es una de las matrices infinitas D1/&#964;C(&#955;)C(&#956;), D1/&#964;&#916;(&#955;)&#916;(&#956;), D1/&#964;&#916;(&#955;)C(&#956;) . Nosotros también damos condiciones para tener xk &#8594; 0(S(A)) donde A es uno de los operadores D1/&#964;C+ (&#955;)&#916;(&#956;), D1/&#964;C(&#955;)C(&#956;), D1/&#964;C+ (&#955;)C+(&#956;), o D1/&#964;&#916;(&#955;)C+(&#956;).
first_indexed 2024-12-19T15:45:29Z
format Article
id doaj.art-6eb728dc4fe6475a81790942aec23790
institution Directory Open Access Journal
issn 0716-7776
0719-0646
language English
last_indexed 2024-12-19T15:45:29Z
publishDate 2010-01-01
publisher Universidad de La Frontera
record_format Article
series Cubo
spelling doaj.art-6eb728dc4fe6475a81790942aec237902022-12-21T20:15:21ZengUniversidad de La FronteraCubo0716-77760719-06462010-01-01123121138Calculations in New Sequence Spaces and Application to Statistical ConvergenceBRUNO DE MALAFOSSEVLADIMIR RAKOEVICIn this paper we recall recent results that are direct consequences of the fact that (w&#8734;(&#955;) ,w&#8734;(&#955;)) is a Banach algebra. Then we define the set W&#964; = D&#964;w&#8734; and characterize the sets W&#964; (A) where A is either of the operators &#916;, &#8721;, &#916;(&#955;), or C(&#955;). Afterwardswe consider the sets [A1,A2]W&#964; of all sequences X such that A1 (&#955;)(|A2(&#956;) X|) &#8712; W&#964; where A1 and A2 are of the form C(&#958;), C+ (&#958;), &#916;(&#958;), or &#916;+ (&#958;) and it is given necessary conditions to get |A1 (&#955;),A2(&#956;)| W&#964; in the form W&#958;. Finally we apply the previous results to statistical convergence. So we have conditions to have xk &#8594; L(S(A)) where A is either of the infinite matrices D1/&#964;C(&#955;)C(&#956;), D1/&#964;&#916;(&#955;)&#916;(&#956;), D1/&#964;&#916;(&#955;)C(&#956;). We also give conditions to have xk &#8594; 0(S(A)) where A is either of the operators D1/&#964;C+ (&#955;)&#916;(&#956;), D1/&#964;C(&#955;)C(&#956;), D1/&#964;C+ (&#955;)C+(&#956;), or D1/&#964;&#916;(&#955;)C+(&#956;).<br>Recordamos resultados recientes que son consecuencia directa del hecho de que (w&#8734;(&#955;), w&#8734;(&#955;)) es una algebra de Banach. Entonces nosotros definimos el conjunto W&#964; = D&#964;w&#8734;y caracterizamos los conjuntos W&#964; (A) donde A es uno de los siguientes operadores &#916;, &#8721;, &#916;(&#955;), o C(&#955;). Después consideramos los conjuntos[A1,A2]W&#964; de todas las sucesiones X tal que A1 (&#955;)(|A2(&#956;) X|) &#8712; W&#964; dondeA1 y A2 son de la forma C(&#958;), C+ (&#958;), &#916;(&#958;), or &#916;+ (&#958;) y son dadas condiciones necesarias para obtener |A1 (&#955;),A2(&#956;)| W&#964; en la forma W&#958;. Finalmente, aplicamos los resultados previos para tener xk &#8594; L(S(A)) donde A es una de las matrices infinitas D1/&#964;C(&#955;)C(&#956;), D1/&#964;&#916;(&#955;)&#916;(&#956;), D1/&#964;&#916;(&#955;)C(&#956;) . Nosotros también damos condiciones para tener xk &#8594; 0(S(A)) donde A es uno de los operadores D1/&#964;C+ (&#955;)&#916;(&#956;), D1/&#964;C(&#955;)C(&#956;), D1/&#964;C+ (&#955;)C+(&#956;), o D1/&#964;&#916;(&#955;)C+(&#956;).http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300008Banach algebrastatistical convergenceAstatistical convergenceinfinite matrix
spellingShingle BRUNO DE MALAFOSSE
VLADIMIR RAKOEVIC
Calculations in New Sequence Spaces and Application to Statistical Convergence
Cubo
Banach algebra
statistical convergence
Astatistical convergence
infinite matrix
title Calculations in New Sequence Spaces and Application to Statistical Convergence
title_full Calculations in New Sequence Spaces and Application to Statistical Convergence
title_fullStr Calculations in New Sequence Spaces and Application to Statistical Convergence
title_full_unstemmed Calculations in New Sequence Spaces and Application to Statistical Convergence
title_short Calculations in New Sequence Spaces and Application to Statistical Convergence
title_sort calculations in new sequence spaces and application to statistical convergence
topic Banach algebra
statistical convergence
Astatistical convergence
infinite matrix
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300008
work_keys_str_mv AT brunodemalafosse calculationsinnewsequencespacesandapplicationtostatisticalconvergence
AT vladimirrakoevic calculationsinnewsequencespacesandapplicationtostatisticalconvergence