Deep learning and wing interferential patterns identify Anopheles species and discriminate amongst Gambiae complex species

Abstract We present a new and innovative identification method based on deep learning of the wing interferential patterns carried by mosquitoes of the Anopheles genus to classify and assign 20 Anopheles species, including 13 malaria vectors. We provide additional evidence that this approach can iden...

Full description

Bibliographic Details
Main Authors: Arnaud Cannet, Camille Simon-Chane, Mohammad Akhoundi, Aymeric Histace, Olivier Romain, Marc Souchaud, Pierre Jacob, Darian Sereno, Karine Mouline, Christian Barnabe, Frédéric Lardeux, Philippe Boussès, Denis Sereno
Format: Article
Language:English
Published: Nature Portfolio 2023-08-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-41114-4
_version_ 1827634395625816064
author Arnaud Cannet
Camille Simon-Chane
Mohammad Akhoundi
Aymeric Histace
Olivier Romain
Marc Souchaud
Pierre Jacob
Darian Sereno
Karine Mouline
Christian Barnabe
Frédéric Lardeux
Philippe Boussès
Denis Sereno
author_facet Arnaud Cannet
Camille Simon-Chane
Mohammad Akhoundi
Aymeric Histace
Olivier Romain
Marc Souchaud
Pierre Jacob
Darian Sereno
Karine Mouline
Christian Barnabe
Frédéric Lardeux
Philippe Boussès
Denis Sereno
author_sort Arnaud Cannet
collection DOAJ
description Abstract We present a new and innovative identification method based on deep learning of the wing interferential patterns carried by mosquitoes of the Anopheles genus to classify and assign 20 Anopheles species, including 13 malaria vectors. We provide additional evidence that this approach can identify Anopheles spp. with an accuracy of up to 100% for ten out of 20 species. Although, this accuracy was moderate (> 65%) or weak (50%) for three and seven species. The accuracy of the process to discriminate cryptic or sibling species is also assessed on three species belonging to the Gambiae complex. Strikingly, An. gambiae, An. arabiensis and An. coluzzii, morphologically indistinguishable species belonging to the Gambiae complex, were distinguished with 100%, 100%, and 88% accuracy respectively. Therefore, this tool would help entomological surveys of malaria vectors and vector control implementation. In the future, we anticipate our method can be applied to other arthropod vector-borne diseases.
first_indexed 2024-03-09T15:13:42Z
format Article
id doaj.art-6ec3a830d6494cde997f37ae21c762d4
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-03-09T15:13:42Z
publishDate 2023-08-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-6ec3a830d6494cde997f37ae21c762d42023-11-26T13:13:36ZengNature PortfolioScientific Reports2045-23222023-08-0113111310.1038/s41598-023-41114-4Deep learning and wing interferential patterns identify Anopheles species and discriminate amongst Gambiae complex speciesArnaud Cannet0Camille Simon-Chane1Mohammad Akhoundi2Aymeric Histace3Olivier Romain4Marc Souchaud5Pierre Jacob6Darian Sereno7Karine Mouline8Christian Barnabe9Frédéric Lardeux10Philippe Boussès11Denis Sereno12Direction des Affaires Sanitaires et Sociales de la Nouvelle-CalédonieETIS UMR 8051, ENSEA, CNRS, Cergy Paris UniversityParasitology-Mycology, Hopital Avicenne, AP-HPETIS UMR 8051, ENSEA, CNRS, Cergy Paris UniversityETIS UMR 8051, ENSEA, CNRS, Cergy Paris UniversityETIS UMR 8051, ENSEA, CNRS, Cergy Paris UniversityCNRS, Bordeaux INP, LaBRI, UMR 5800, Univ. BordeauxInterTryp, IRD-CIRAD, Infectiology, Medical entomology & One Health research group, Univ MontpellierMIVEGEC, CNRS, IRD, Univ MontpellierInterTryp, IRD-CIRAD, Infectiology, Medical entomology & One Health research group, Univ MontpellierMIVEGEC, CNRS, IRD, Univ MontpellierMIVEGEC, CNRS, IRD, Univ MontpellierInterTryp, IRD-CIRAD, Infectiology, Medical entomology & One Health research group, Univ MontpellierAbstract We present a new and innovative identification method based on deep learning of the wing interferential patterns carried by mosquitoes of the Anopheles genus to classify and assign 20 Anopheles species, including 13 malaria vectors. We provide additional evidence that this approach can identify Anopheles spp. with an accuracy of up to 100% for ten out of 20 species. Although, this accuracy was moderate (> 65%) or weak (50%) for three and seven species. The accuracy of the process to discriminate cryptic or sibling species is also assessed on three species belonging to the Gambiae complex. Strikingly, An. gambiae, An. arabiensis and An. coluzzii, morphologically indistinguishable species belonging to the Gambiae complex, were distinguished with 100%, 100%, and 88% accuracy respectively. Therefore, this tool would help entomological surveys of malaria vectors and vector control implementation. In the future, we anticipate our method can be applied to other arthropod vector-borne diseases.https://doi.org/10.1038/s41598-023-41114-4
spellingShingle Arnaud Cannet
Camille Simon-Chane
Mohammad Akhoundi
Aymeric Histace
Olivier Romain
Marc Souchaud
Pierre Jacob
Darian Sereno
Karine Mouline
Christian Barnabe
Frédéric Lardeux
Philippe Boussès
Denis Sereno
Deep learning and wing interferential patterns identify Anopheles species and discriminate amongst Gambiae complex species
Scientific Reports
title Deep learning and wing interferential patterns identify Anopheles species and discriminate amongst Gambiae complex species
title_full Deep learning and wing interferential patterns identify Anopheles species and discriminate amongst Gambiae complex species
title_fullStr Deep learning and wing interferential patterns identify Anopheles species and discriminate amongst Gambiae complex species
title_full_unstemmed Deep learning and wing interferential patterns identify Anopheles species and discriminate amongst Gambiae complex species
title_short Deep learning and wing interferential patterns identify Anopheles species and discriminate amongst Gambiae complex species
title_sort deep learning and wing interferential patterns identify anopheles species and discriminate amongst gambiae complex species
url https://doi.org/10.1038/s41598-023-41114-4
work_keys_str_mv AT arnaudcannet deeplearningandwinginterferentialpatternsidentifyanophelesspeciesanddiscriminateamongstgambiaecomplexspecies
AT camillesimonchane deeplearningandwinginterferentialpatternsidentifyanophelesspeciesanddiscriminateamongstgambiaecomplexspecies
AT mohammadakhoundi deeplearningandwinginterferentialpatternsidentifyanophelesspeciesanddiscriminateamongstgambiaecomplexspecies
AT aymerichistace deeplearningandwinginterferentialpatternsidentifyanophelesspeciesanddiscriminateamongstgambiaecomplexspecies
AT olivierromain deeplearningandwinginterferentialpatternsidentifyanophelesspeciesanddiscriminateamongstgambiaecomplexspecies
AT marcsouchaud deeplearningandwinginterferentialpatternsidentifyanophelesspeciesanddiscriminateamongstgambiaecomplexspecies
AT pierrejacob deeplearningandwinginterferentialpatternsidentifyanophelesspeciesanddiscriminateamongstgambiaecomplexspecies
AT dariansereno deeplearningandwinginterferentialpatternsidentifyanophelesspeciesanddiscriminateamongstgambiaecomplexspecies
AT karinemouline deeplearningandwinginterferentialpatternsidentifyanophelesspeciesanddiscriminateamongstgambiaecomplexspecies
AT christianbarnabe deeplearningandwinginterferentialpatternsidentifyanophelesspeciesanddiscriminateamongstgambiaecomplexspecies
AT fredericlardeux deeplearningandwinginterferentialpatternsidentifyanophelesspeciesanddiscriminateamongstgambiaecomplexspecies
AT philippebousses deeplearningandwinginterferentialpatternsidentifyanophelesspeciesanddiscriminateamongstgambiaecomplexspecies
AT denissereno deeplearningandwinginterferentialpatternsidentifyanophelesspeciesanddiscriminateamongstgambiaecomplexspecies