Region-Level Traffic Prediction Based on Temporal Multi-Spatial Dependence Graph Convolutional Network from GPS Data
Region-level traffic information can characterize dynamic changes of urban traffic at the macro level. Real-time region-level traffic prediction help city traffic managers with traffic demand analysis, traffic congestion control, and other activities, and it has become a research hotspot. As more ve...
Glavni autori: | Haiqiang Yang, Xinming Zhang, Zihan Li, Jianxun Cui |
---|---|
Format: | Članak |
Jezik: | English |
Izdano: |
MDPI AG
2022-01-01
|
Serija: | Remote Sensing |
Teme: | |
Online pristup: | https://www.mdpi.com/2072-4292/14/2/303 |
Slični predmeti
-
Predicting traffic propagation flow in urban road network with multi-graph convolutional network
od: Haiqiang Yang, i dr.
Izdano: (2023-06-01) -
Global Spatial-Temporal Graph Convolutional Network for Urban Traffic Speed Prediction
od: Liang Ge, i dr.
Izdano: (2020-02-01) -
MD-GCN: A Multi-Scale Temporal Dual Graph Convolution Network for Traffic Flow Prediction
od: Xiaohui Huang, i dr.
Izdano: (2023-01-01) -
STAGCN: Spatial–Temporal Attention Graph Convolution Network for Traffic Forecasting
od: Yafeng Gu, i dr.
Izdano: (2022-05-01) -
Spatial-Temporal Dynamic Graph Convolutional Neural Network for Traffic Prediction
od: Wenjuan Xiao, i dr.
Izdano: (2023-01-01)