Comparing Numerical Relativity and Perturbation Theory Waveforms for a Non-Spinning Equal-Mass Binary

Past studies have empirically demonstrated a surprising agreement between gravitational waveforms computed using adiabatic–driven–inspiral point–particle black hole perturbation theory (ppBHPT) and numerical relativity (NR) following a straightforward calibration step, sometimes referred to as <i...

Full description

Bibliographic Details
Main Authors: Tousif Islam, Scott E. Field, Gaurav Khanna
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/10/1/25
Description
Summary:Past studies have empirically demonstrated a surprising agreement between gravitational waveforms computed using adiabatic–driven–inspiral point–particle black hole perturbation theory (ppBHPT) and numerical relativity (NR) following a straightforward calibration step, sometimes referred to as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> scaling. Specifically focusing on the quadrupole mode, this calibration technique necessitates only two time-independent parameters to scale the overall amplitude and time coordinate. In this article, part of a Special Issue, we investigate this scaling for non-spinning binaries at the equal-mass limit. Even without calibration, NR and ppBHPT waveforms exhibit an unexpected degree of similarity after accounting for different mass scale definitions. Post-calibration, good agreement between ppBHPT and NR waveforms extends nearly up to the point of the merger. We also assess the breakdown of the time-independent assumption of the scaling parameters, shedding light on current limitations and suggesting potential generalizations for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> scaling technique.
ISSN:2218-1997