Metamaterial Based Ku-Band Antenna for Low Earth Orbit Nanosatellite Payload System

The concept of nanosatellite technology becomes a viable platform for earth and space observation research to minimize cost and build time for the payload. The communication approach is the essential fundamental attribute of a satellite, of which the antenna is a crucial component for forming a comm...

Full description

Bibliographic Details
Main Authors: Touhidul Alam, Mohammad Tariqul Islam, Mohammad Lutful Hakim, Khalid H. Alharbi, Mandeep Singh Jit Singh, Muntasir M. Sheikh, Rabah W. Aldhaheri, Md. Shabiul Islam, Mohamed S. Soliman
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/13/2/228
Description
Summary:The concept of nanosatellite technology becomes a viable platform for earth and space observation research to minimize cost and build time for the payload. The communication approach is the essential fundamental attribute of a satellite, of which the antenna is a crucial component for forming a communication link between the nanosatellite and the earth. The nanosatellite antenna must comply with some special requirements like compact size, lightweight, and high gain with a space-compatible structure. This paper proposes a compact metamaterial-based Ku-band antenna with circular polarization for the nanosatellite communication system. The designed antenna obtained an impedance bandwidth of 2.275 GHz with a realized gain of 6.74 dBi and 3 dB axial beamwidth of 165° at 12.10 GHz. The overall antenna size of the designed is 0.51λ × 0.51λ × 0.17λ, which is fabricated on Rogers 5880 substrate material. The antenna results performance has been examined with a 1 U nanosatellite structure and found suitable to integrate with metallic and nonmetallic surfaces of any miniature nanosatellite structure.
ISSN:2079-4991