Molecular Identification of Endophytic Bacteria in <i>Leucojum aestivum</i> In Vitro Culture, NMR-Based Metabolomics Study and LC-MS Analysis Leading to Potential Amaryllidaceae Alkaloid Production

In this study, endophytic bacteria belonging to the <i>Bacillus</i> genus were isolated from in vitro bulblets of <i>Leucojum aestivum</i> and their ability to produce Amaryllidaceae alkaloids was studied. Proton Nuclear Magnetic Resonance (<sup>1</sup>H NMR)-base...

Full description

Bibliographic Details
Main Authors: Rosella Spina, Sahar Saliba, François Dupire, Agata Ptak, Alain Hehn, Séverine Piutti, Sophie Poinsignon, Sebastien Leclerc, Sabine Bouguet-Bonnet, Dominique Laurain-Mattar
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/22/4/1773
Description
Summary:In this study, endophytic bacteria belonging to the <i>Bacillus</i> genus were isolated from in vitro bulblets of <i>Leucojum aestivum</i> and their ability to produce Amaryllidaceae alkaloids was studied. Proton Nuclear Magnetic Resonance (<sup>1</sup>H NMR)-based metabolomics combined with multivariate data analysis was chosen to compare the metabolism of this plant (in vivo bulbs, in vitro bulblets) with those of the endophytic bacteria community. Primary metabolites were quantified by quantitative <sup>1</sup>H NMR (qNMR) method. The results showed that tyrosine, one precursor of the Amaryllidaceae alkaloid biosynthesis pathway, was higher in endophytic extract compared to plant extract. In total, 22 compounds were identified including five molecules common to plant and endophyte extracts (tyrosine, isoleucine, valine, fatty acids and tyramine). In addition, endophytic extracts were analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas Chromatography-Mass Spectrometry (GC-MS) for the identification of compounds in very low concentrations. Five Amaryllidaceae alkaloids were detected in the extracts of endophytic bacteria. Lycorine, previously detected by <sup>1</sup>H NMR, was confirmed with LC-MS analysis. Tazettine, pseudolycorine, acetylpseudolycorine, 1,2-dihydro-chlidanthine were also identified by LC-MS using the positive ionization mode or by GC-MS. In addition, 11 primary metabolites were identified in the endophytic extracts such as tyramine, which was obtained by decarboxylation of tyrosine. Thus, <i>Bacillus</i> sp. isolated from <i>L. aestivum</i> bulblets synthesized some primary and specialized metabolites in common with the <i>L.</i><i>aestivum</i> plant. These endophytic bacteria are an interesting new approach for producing the Amaryllidaceae alkaloid such as lycorine.
ISSN:1661-6596
1422-0067