Potential and Challenges of Harmonizing 40 Years of AVHRR Data: The TIMELINE Experience
Earth Observation satellite data allows for the monitoring of the surface of our planet at predefined intervals covering large areas. However, there is only one medium resolution sensor family in orbit that enables an observation time span of 40 and more years at a daily repeat interval. This is the...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-09-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/13/18/3618 |
_version_ | 1797517350715523072 |
---|---|
author | Stefan Dech Stefanie Holzwarth Sarah Asam Thorsten Andresen Martin Bachmann Martin Boettcher Andreas Dietz Christina Eisfelder Corinne Frey Gerhard Gesell Ursula Gessner Andreas Hirner Matthias Hofmann Grit Kirches Doris Klein Igor Klein Tanja Kraus Detmar Krause Simon Plank Thomas Popp Sophie Reinermann Philipp Reiners Sebastian Roessler Thomas Ruppert Alexander Scherbachenko Ranjitha Vignesh Meinhard Wolfmueller Hendrik Zwenzner Claudia Kuenzer |
author_facet | Stefan Dech Stefanie Holzwarth Sarah Asam Thorsten Andresen Martin Bachmann Martin Boettcher Andreas Dietz Christina Eisfelder Corinne Frey Gerhard Gesell Ursula Gessner Andreas Hirner Matthias Hofmann Grit Kirches Doris Klein Igor Klein Tanja Kraus Detmar Krause Simon Plank Thomas Popp Sophie Reinermann Philipp Reiners Sebastian Roessler Thomas Ruppert Alexander Scherbachenko Ranjitha Vignesh Meinhard Wolfmueller Hendrik Zwenzner Claudia Kuenzer |
author_sort | Stefan Dech |
collection | DOAJ |
description | Earth Observation satellite data allows for the monitoring of the surface of our planet at predefined intervals covering large areas. However, there is only one medium resolution sensor family in orbit that enables an observation time span of 40 and more years at a daily repeat interval. This is the AVHRR sensor family. If we want to investigate the long-term impacts of climate change on our environment, we can only do so based on data that remains available for several decades. If we then want to investigate processes with respect to climate change, we need very high temporal resolution enabling the generation of long-term time series and the derivation of related statistical parameters such as mean, variability, anomalies, and trends. The challenges to generating a well calibrated and harmonized 40-year-long time series based on AVHRR sensor data flown on 14 different platforms are enormous. However, only extremely thorough pre-processing and harmonization ensures that trends found in the data are real trends and not sensor-related (or other) artefacts. The generation of European-wide time series as a basis for the derivation of a multitude of parameters is therefore an extremely challenging task, the details of which are presented in this paper. |
first_indexed | 2024-03-10T07:15:26Z |
format | Article |
id | doaj.art-6eed2aec0fbc4a16be50d7d2a5617ae9 |
institution | Directory Open Access Journal |
issn | 2072-4292 |
language | English |
last_indexed | 2024-03-10T07:15:26Z |
publishDate | 2021-09-01 |
publisher | MDPI AG |
record_format | Article |
series | Remote Sensing |
spelling | doaj.art-6eed2aec0fbc4a16be50d7d2a5617ae92023-11-22T15:05:43ZengMDPI AGRemote Sensing2072-42922021-09-011318361810.3390/rs13183618Potential and Challenges of Harmonizing 40 Years of AVHRR Data: The TIMELINE ExperienceStefan Dech0Stefanie Holzwarth1Sarah Asam2Thorsten Andresen3Martin Bachmann4Martin Boettcher5Andreas Dietz6Christina Eisfelder7Corinne Frey8Gerhard Gesell9Ursula Gessner10Andreas Hirner11Matthias Hofmann12Grit Kirches13Doris Klein14Igor Klein15Tanja Kraus16Detmar Krause17Simon Plank18Thomas Popp19Sophie Reinermann20Philipp Reiners21Sebastian Roessler22Thomas Ruppert23Alexander Scherbachenko24Ranjitha Vignesh25Meinhard Wolfmueller26Hendrik Zwenzner27Claudia Kuenzer28German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyBrockmann Consult GmbH, 21029 Hamburg, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyRosenthaler + Partner AG, 4132 Muttenz, SwitzerlandGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyBrockmann Consult GmbH, 21029 Hamburg, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyGerman Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, GermanyEarth Observation satellite data allows for the monitoring of the surface of our planet at predefined intervals covering large areas. However, there is only one medium resolution sensor family in orbit that enables an observation time span of 40 and more years at a daily repeat interval. This is the AVHRR sensor family. If we want to investigate the long-term impacts of climate change on our environment, we can only do so based on data that remains available for several decades. If we then want to investigate processes with respect to climate change, we need very high temporal resolution enabling the generation of long-term time series and the derivation of related statistical parameters such as mean, variability, anomalies, and trends. The challenges to generating a well calibrated and harmonized 40-year-long time series based on AVHRR sensor data flown on 14 different platforms are enormous. However, only extremely thorough pre-processing and harmonization ensures that trends found in the data are real trends and not sensor-related (or other) artefacts. The generation of European-wide time series as a basis for the derivation of a multitude of parameters is therefore an extremely challenging task, the details of which are presented in this paper.https://www.mdpi.com/2072-4292/13/18/3618AVHRREarth Observationharmonizationtime series analysisclimate related trendsautomatic processing |
spellingShingle | Stefan Dech Stefanie Holzwarth Sarah Asam Thorsten Andresen Martin Bachmann Martin Boettcher Andreas Dietz Christina Eisfelder Corinne Frey Gerhard Gesell Ursula Gessner Andreas Hirner Matthias Hofmann Grit Kirches Doris Klein Igor Klein Tanja Kraus Detmar Krause Simon Plank Thomas Popp Sophie Reinermann Philipp Reiners Sebastian Roessler Thomas Ruppert Alexander Scherbachenko Ranjitha Vignesh Meinhard Wolfmueller Hendrik Zwenzner Claudia Kuenzer Potential and Challenges of Harmonizing 40 Years of AVHRR Data: The TIMELINE Experience Remote Sensing AVHRR Earth Observation harmonization time series analysis climate related trends automatic processing |
title | Potential and Challenges of Harmonizing 40 Years of AVHRR Data: The TIMELINE Experience |
title_full | Potential and Challenges of Harmonizing 40 Years of AVHRR Data: The TIMELINE Experience |
title_fullStr | Potential and Challenges of Harmonizing 40 Years of AVHRR Data: The TIMELINE Experience |
title_full_unstemmed | Potential and Challenges of Harmonizing 40 Years of AVHRR Data: The TIMELINE Experience |
title_short | Potential and Challenges of Harmonizing 40 Years of AVHRR Data: The TIMELINE Experience |
title_sort | potential and challenges of harmonizing 40 years of avhrr data the timeline experience |
topic | AVHRR Earth Observation harmonization time series analysis climate related trends automatic processing |
url | https://www.mdpi.com/2072-4292/13/18/3618 |
work_keys_str_mv | AT stefandech potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT stefanieholzwarth potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT sarahasam potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT thorstenandresen potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT martinbachmann potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT martinboettcher potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT andreasdietz potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT christinaeisfelder potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT corinnefrey potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT gerhardgesell potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT ursulagessner potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT andreashirner potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT matthiashofmann potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT gritkirches potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT dorisklein potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT igorklein potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT tanjakraus potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT detmarkrause potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT simonplank potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT thomaspopp potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT sophiereinermann potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT philippreiners potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT sebastianroessler potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT thomasruppert potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT alexanderscherbachenko potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT ranjithavignesh potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT meinhardwolfmueller potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT hendrikzwenzner potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience AT claudiakuenzer potentialandchallengesofharmonizing40yearsofavhrrdatathetimelineexperience |