The Multi-Station Based Variable Speed Limit Model for Realization on Urban Highway

Intelligent transport systems (ITS) are a convergence of information technology and transportation systems as seen in the variable speed limit (VSL) system. Since the VSL system controls the speed limit according to the traffic conditions, it can improve the safety and efficiency of a transport netw...

Full description

Bibliographic Details
Main Authors: Soobin Jeon, Chongmyung Park, Dongmahn Seo
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/9/5/801
Description
Summary:Intelligent transport systems (ITS) are a convergence of information technology and transportation systems as seen in the variable speed limit (VSL) system. Since the VSL system controls the speed limit according to the traffic conditions, it can improve the safety and efficiency of a transport network. Many researchers have studied the real-time VSL (RVSL) algorithm based on real-time traffic information from multiple stations recording traffic data. However, this method can suffer from inaccurate selection of the VSL start station (VSS), incorrect VSL calculations, and is unable to quickly react to the changing traffic conditions. Unstable VSL systems result in more congestion on freeways. In this study, an enhanced VSL algorithm (EVSL) is proposed to address the limitations of the existing RVSL algorithm. This selects preliminary VSL start stations (pVSS), which is expected to end congestion using acceleration and allocates final VSSs for each congestion interval using selected pVSS. This controls the vehicles that entered the congestion area based on the selected VSS. We used four metrics to evaluate the performance of the proposed VSL (VSS stability assessment, speed control stability assessment, travel time, and shockwave), which were all enhanced when compared to the standard RVSL algorithm. In addition, the EVSL algorithm showed stable VSL performance, which is critical for road safety.
ISSN:2079-9292