Innovative Strategies for Ozone Treatment of Industrial Wastes: Hydrothermal Liquefaction of Surfactant Wastewater and Leacheate Evaporation
In this paper, ozonation is used as a pre-treatment for two different kinds of wastewaters. The first purpose is the study of the effect of ozonation on a landfill leachate treated by a reverse osmosis process prior a concentration step in an atmospheric evaporator. At first sight, an ozone treatmen...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIDIC Servizi S.r.l.
2023-05-01
|
Series: | Chemical Engineering Transactions |
Online Access: | https://www.cetjournal.it/index.php/cet/article/view/13146 |
_version_ | 1797816399034318848 |
---|---|
author | Juan J. Mascarell Jose M. Abelleira-Pereira Belen García-Jarana Juan R. Portela Enrique Martinez De La Ossa Jose L. García-Morales |
author_facet | Juan J. Mascarell Jose M. Abelleira-Pereira Belen García-Jarana Juan R. Portela Enrique Martinez De La Ossa Jose L. García-Morales |
author_sort | Juan J. Mascarell |
collection | DOAJ |
description | In this paper, ozonation is used as a pre-treatment for two different kinds of wastewaters. The first purpose is the study of the effect of ozonation on a landfill leachate treated by a reverse osmosis process prior a concentration step in an atmospheric evaporator. At first sight, an ozone treatment can supply three effects: Defoaming capacity, biocide effect, and pH acidifier to avoid the ammonia striping in the evaporation process. The second purpose of this paper is regarding hydrothermal liquefaction (HTL) of wastewaters. HTL can produce a liquid fuel, normally called crude-oil, alternative to fossil fuels, as well as other products of industrial interest (phenols, furfurals, etc.). The second objective is the study of the possible positive effect that a pre-treatment with ozone can have on the performance of the subsequent HTL. In this work, HTL is applied to liquid surfactant wastes obtaining up to 7% crude-oil yield, with a High Heating Value (HHV) higher than 8.000 cal/g. These results are compared with those obtained when an ozonation pre-treatment is applied before the HTL process. Ozone treatment shows a slight defoaming capacity for the leachate feed but don’t seem to show a significant difference in the HHV of the crude-oils obtained from liquid surfactant. However, there is a noticeable difference in the solid residue generated for this later. Less aggregates of solid particles and a weight reduction of 20% in the filtering step were obtained from ozonated liquid surfactants. The reduction of solid by-products is of great interest for dimensioning an industrial-scale HTL plant due to the problems that these solids can generate in pipes and valves. |
first_indexed | 2024-03-13T08:37:02Z |
format | Article |
id | doaj.art-6ef106b32a584f098f6ffc698126e1b6 |
institution | Directory Open Access Journal |
issn | 2283-9216 |
language | English |
last_indexed | 2024-03-13T08:37:02Z |
publishDate | 2023-05-01 |
publisher | AIDIC Servizi S.r.l. |
record_format | Article |
series | Chemical Engineering Transactions |
spelling | doaj.art-6ef106b32a584f098f6ffc698126e1b62023-05-30T22:26:00ZengAIDIC Servizi S.r.l.Chemical Engineering Transactions2283-92162023-05-019910.3303/CET2399068Innovative Strategies for Ozone Treatment of Industrial Wastes: Hydrothermal Liquefaction of Surfactant Wastewater and Leacheate EvaporationJuan J. MascarellJose M. Abelleira-PereiraBelen García-JaranaJuan R. PortelaEnrique Martinez De La OssaJose L. García-MoralesIn this paper, ozonation is used as a pre-treatment for two different kinds of wastewaters. The first purpose is the study of the effect of ozonation on a landfill leachate treated by a reverse osmosis process prior a concentration step in an atmospheric evaporator. At first sight, an ozone treatment can supply three effects: Defoaming capacity, biocide effect, and pH acidifier to avoid the ammonia striping in the evaporation process. The second purpose of this paper is regarding hydrothermal liquefaction (HTL) of wastewaters. HTL can produce a liquid fuel, normally called crude-oil, alternative to fossil fuels, as well as other products of industrial interest (phenols, furfurals, etc.). The second objective is the study of the possible positive effect that a pre-treatment with ozone can have on the performance of the subsequent HTL. In this work, HTL is applied to liquid surfactant wastes obtaining up to 7% crude-oil yield, with a High Heating Value (HHV) higher than 8.000 cal/g. These results are compared with those obtained when an ozonation pre-treatment is applied before the HTL process. Ozone treatment shows a slight defoaming capacity for the leachate feed but don’t seem to show a significant difference in the HHV of the crude-oils obtained from liquid surfactant. However, there is a noticeable difference in the solid residue generated for this later. Less aggregates of solid particles and a weight reduction of 20% in the filtering step were obtained from ozonated liquid surfactants. The reduction of solid by-products is of great interest for dimensioning an industrial-scale HTL plant due to the problems that these solids can generate in pipes and valves.https://www.cetjournal.it/index.php/cet/article/view/13146 |
spellingShingle | Juan J. Mascarell Jose M. Abelleira-Pereira Belen García-Jarana Juan R. Portela Enrique Martinez De La Ossa Jose L. García-Morales Innovative Strategies for Ozone Treatment of Industrial Wastes: Hydrothermal Liquefaction of Surfactant Wastewater and Leacheate Evaporation Chemical Engineering Transactions |
title | Innovative Strategies for Ozone Treatment of Industrial Wastes: Hydrothermal Liquefaction of Surfactant Wastewater and Leacheate Evaporation |
title_full | Innovative Strategies for Ozone Treatment of Industrial Wastes: Hydrothermal Liquefaction of Surfactant Wastewater and Leacheate Evaporation |
title_fullStr | Innovative Strategies for Ozone Treatment of Industrial Wastes: Hydrothermal Liquefaction of Surfactant Wastewater and Leacheate Evaporation |
title_full_unstemmed | Innovative Strategies for Ozone Treatment of Industrial Wastes: Hydrothermal Liquefaction of Surfactant Wastewater and Leacheate Evaporation |
title_short | Innovative Strategies for Ozone Treatment of Industrial Wastes: Hydrothermal Liquefaction of Surfactant Wastewater and Leacheate Evaporation |
title_sort | innovative strategies for ozone treatment of industrial wastes hydrothermal liquefaction of surfactant wastewater and leacheate evaporation |
url | https://www.cetjournal.it/index.php/cet/article/view/13146 |
work_keys_str_mv | AT juanjmascarell innovativestrategiesforozonetreatmentofindustrialwasteshydrothermalliquefactionofsurfactantwastewaterandleacheateevaporation AT josemabelleirapereira innovativestrategiesforozonetreatmentofindustrialwasteshydrothermalliquefactionofsurfactantwastewaterandleacheateevaporation AT belengarciajarana innovativestrategiesforozonetreatmentofindustrialwasteshydrothermalliquefactionofsurfactantwastewaterandleacheateevaporation AT juanrportela innovativestrategiesforozonetreatmentofindustrialwasteshydrothermalliquefactionofsurfactantwastewaterandleacheateevaporation AT enriquemartinezdelaossa innovativestrategiesforozonetreatmentofindustrialwasteshydrothermalliquefactionofsurfactantwastewaterandleacheateevaporation AT joselgarciamorales innovativestrategiesforozonetreatmentofindustrialwasteshydrothermalliquefactionofsurfactantwastewaterandleacheateevaporation |