Experimental Analysis of the Influence of Carrier Layer Material on the Performance of the Control System of a Cantilever-Type Piezoelectric Actuator

The subject of this article is an experimental analysis of the control system of a composite-based piezoelectric actuator and an aluminum-based piezoelectric actuator. Analysis was performed for both the unimorph and bimorph structures. To carry out laboratory research, two piezoelectric actuators w...

Full description

Bibliographic Details
Main Author: Dariusz Grzybek
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/17/1/96
Description
Summary:The subject of this article is an experimental analysis of the control system of a composite-based piezoelectric actuator and an aluminum-based piezoelectric actuator. Analysis was performed for both the unimorph and bimorph structures. To carry out laboratory research, two piezoelectric actuators with a cantilever sandwich beam structure were manufactured. In the first beam, the carrier layer was made of glass-reinforced epoxy composite (FR4), and in the second beam, it was made of 1050 aluminum. A linear mathematical model of both actuators was also developed. A modification of the method of selecting weights in the LQR control algorithm for a cantilever-type piezoelectric actuator was proposed. The weights in the R matrix for the actuator containing a carrier layer made of stiffer material should be smaller than those for the actuator containing a carrier layer made of less stiff material. Additionally, regardless of the carrier layer material, in the case of a bimorph, the weight in the R matrix that corresponds to the control voltage of the compressing MFC patch should be smaller than the weight corresponding to the control voltage of the stretching MFC patch.
ISSN:1996-1944