A microstructure sensitive model for deformation of Ti-6Al-4V describing Cast-and-Wrought and Additive Manufacturing morphologies
Microstructural variations affect deformation response of materials and it is not presented in most of plastic flow prediction models. This work presents a unified description for the deformation response of Ti-6Al-4V (Ti-64) that successfully captures the differences in strength between microstruct...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2018-12-01
|
Series: | Materials & Design |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0264127518307226 |
_version_ | 1819014809122766848 |
---|---|
author | M.A. Galindo-Fernández K. Mumtaz P.E.J. Rivera-Díaz-del-Castillo E.I. Galindo-Nava H. Ghadbeigi |
author_facet | M.A. Galindo-Fernández K. Mumtaz P.E.J. Rivera-Díaz-del-Castillo E.I. Galindo-Nava H. Ghadbeigi |
author_sort | M.A. Galindo-Fernández |
collection | DOAJ |
description | Microstructural variations affect deformation response of materials and it is not presented in most of plastic flow prediction models. This work presents a unified description for the deformation response of Ti-6Al-4V (Ti-64) that successfully captures the differences in strength between microstructures produced by conventional cast & wrought routes (C&W) and those obtained by Additive Manufacturing (AM), under various deformation conditions. In the developed model the grain morphology, grain size, phase volume fractions and phase chemical compositions have been linked to the mechanical properties of the studied Ti-64 alloys to predict the effect of processing routes on deformation behaviour of the materials. The model performance has been tested on seven different microstructures from C&W to AM processing routs. It has been found that altering the microstructure greatly affects the yield strength of the tested materials. Additionally, the strength of Ti-64 was found to be mostly affected by the relative volume fraction of α, β and α′, and their respective morphology. The results showed that the model not only successfully predicts the strength of martensitic structures generated through AM but also those obtained by quenching in conventional C&W processing. The findings from this study also suggest that the model could be extended to other titanium alloys within the α + β family. Keywords: Modelling, Ti-6Al-4V, Additive manufacturing, Microstructure, Martensite |
first_indexed | 2024-12-21T02:21:44Z |
format | Article |
id | doaj.art-6ef7ee29be584e7494ec13af1f6574cb |
institution | Directory Open Access Journal |
issn | 0264-1275 |
language | English |
last_indexed | 2024-12-21T02:21:44Z |
publishDate | 2018-12-01 |
publisher | Elsevier |
record_format | Article |
series | Materials & Design |
spelling | doaj.art-6ef7ee29be584e7494ec13af1f6574cb2022-12-21T19:19:07ZengElsevierMaterials & Design0264-12752018-12-01160350362A microstructure sensitive model for deformation of Ti-6Al-4V describing Cast-and-Wrought and Additive Manufacturing morphologiesM.A. Galindo-Fernández0K. Mumtaz1P.E.J. Rivera-Díaz-del-Castillo2E.I. Galindo-Nava3H. Ghadbeigi4Department of Mechanical Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UKDepartment of Mechanical Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UKEngineering Department, Lancaster University, Engineering Building, Lancaster LA1 4YW, UKDepartment of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge CB3 0FS, UKDepartment of Mechanical Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; Corresponding author.Microstructural variations affect deformation response of materials and it is not presented in most of plastic flow prediction models. This work presents a unified description for the deformation response of Ti-6Al-4V (Ti-64) that successfully captures the differences in strength between microstructures produced by conventional cast & wrought routes (C&W) and those obtained by Additive Manufacturing (AM), under various deformation conditions. In the developed model the grain morphology, grain size, phase volume fractions and phase chemical compositions have been linked to the mechanical properties of the studied Ti-64 alloys to predict the effect of processing routes on deformation behaviour of the materials. The model performance has been tested on seven different microstructures from C&W to AM processing routs. It has been found that altering the microstructure greatly affects the yield strength of the tested materials. Additionally, the strength of Ti-64 was found to be mostly affected by the relative volume fraction of α, β and α′, and their respective morphology. The results showed that the model not only successfully predicts the strength of martensitic structures generated through AM but also those obtained by quenching in conventional C&W processing. The findings from this study also suggest that the model could be extended to other titanium alloys within the α + β family. Keywords: Modelling, Ti-6Al-4V, Additive manufacturing, Microstructure, Martensitehttp://www.sciencedirect.com/science/article/pii/S0264127518307226 |
spellingShingle | M.A. Galindo-Fernández K. Mumtaz P.E.J. Rivera-Díaz-del-Castillo E.I. Galindo-Nava H. Ghadbeigi A microstructure sensitive model for deformation of Ti-6Al-4V describing Cast-and-Wrought and Additive Manufacturing morphologies Materials & Design |
title | A microstructure sensitive model for deformation of Ti-6Al-4V describing Cast-and-Wrought and Additive Manufacturing morphologies |
title_full | A microstructure sensitive model for deformation of Ti-6Al-4V describing Cast-and-Wrought and Additive Manufacturing morphologies |
title_fullStr | A microstructure sensitive model for deformation of Ti-6Al-4V describing Cast-and-Wrought and Additive Manufacturing morphologies |
title_full_unstemmed | A microstructure sensitive model for deformation of Ti-6Al-4V describing Cast-and-Wrought and Additive Manufacturing morphologies |
title_short | A microstructure sensitive model for deformation of Ti-6Al-4V describing Cast-and-Wrought and Additive Manufacturing morphologies |
title_sort | microstructure sensitive model for deformation of ti 6al 4v describing cast and wrought and additive manufacturing morphologies |
url | http://www.sciencedirect.com/science/article/pii/S0264127518307226 |
work_keys_str_mv | AT magalindofernandez amicrostructuresensitivemodelfordeformationofti6al4vdescribingcastandwroughtandadditivemanufacturingmorphologies AT kmumtaz amicrostructuresensitivemodelfordeformationofti6al4vdescribingcastandwroughtandadditivemanufacturingmorphologies AT pejriveradiazdelcastillo amicrostructuresensitivemodelfordeformationofti6al4vdescribingcastandwroughtandadditivemanufacturingmorphologies AT eigalindonava amicrostructuresensitivemodelfordeformationofti6al4vdescribingcastandwroughtandadditivemanufacturingmorphologies AT hghadbeigi amicrostructuresensitivemodelfordeformationofti6al4vdescribingcastandwroughtandadditivemanufacturingmorphologies AT magalindofernandez microstructuresensitivemodelfordeformationofti6al4vdescribingcastandwroughtandadditivemanufacturingmorphologies AT kmumtaz microstructuresensitivemodelfordeformationofti6al4vdescribingcastandwroughtandadditivemanufacturingmorphologies AT pejriveradiazdelcastillo microstructuresensitivemodelfordeformationofti6al4vdescribingcastandwroughtandadditivemanufacturingmorphologies AT eigalindonava microstructuresensitivemodelfordeformationofti6al4vdescribingcastandwroughtandadditivemanufacturingmorphologies AT hghadbeigi microstructuresensitivemodelfordeformationofti6al4vdescribingcastandwroughtandadditivemanufacturingmorphologies |