Neural activity patterns in the chemosensory network encoding vomeronasal and olfactory information in mice

Rodents detect chemical information mainly through the olfactory and vomeronasal systems, which play complementary roles to orchestrate appropriate behavioral responses. To characterize the integration of chemosensory information, we have performed electrophysiological and c-Fos studies of the bulbo...

Full description

Bibliographic Details
Main Authors: Cecília Pardo-Bellver, Manuel E. Vila-Martin, Sergio Martínez-Bellver, María Villafranca-Faus, Anna Teruel-Sanchis, Camila A. Savarelli-Balsamo, Sylwia M. Drabik, Joana Martínez-Ricós, Ana Cervera-Ferri, Fernando Martínez-García, Enrique Lanuza, Vicent Teruel-Martí
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-09-01
Series:Frontiers in Neuroanatomy
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fnana.2022.988015/full
_version_ 1818038475855757312
author Cecília Pardo-Bellver
Manuel E. Vila-Martin
Manuel E. Vila-Martin
Sergio Martínez-Bellver
María Villafranca-Faus
Anna Teruel-Sanchis
Anna Teruel-Sanchis
Camila A. Savarelli-Balsamo
Camila A. Savarelli-Balsamo
Sylwia M. Drabik
Sylwia M. Drabik
Joana Martínez-Ricós
Ana Cervera-Ferri
Fernando Martínez-García
Enrique Lanuza
Vicent Teruel-Martí
author_facet Cecília Pardo-Bellver
Manuel E. Vila-Martin
Manuel E. Vila-Martin
Sergio Martínez-Bellver
María Villafranca-Faus
Anna Teruel-Sanchis
Anna Teruel-Sanchis
Camila A. Savarelli-Balsamo
Camila A. Savarelli-Balsamo
Sylwia M. Drabik
Sylwia M. Drabik
Joana Martínez-Ricós
Ana Cervera-Ferri
Fernando Martínez-García
Enrique Lanuza
Vicent Teruel-Martí
author_sort Cecília Pardo-Bellver
collection DOAJ
description Rodents detect chemical information mainly through the olfactory and vomeronasal systems, which play complementary roles to orchestrate appropriate behavioral responses. To characterize the integration of chemosensory information, we have performed electrophysiological and c-Fos studies of the bulbo–amygdalar network in freely behaving female mice exploring neutral or conspecific stimuli. We hypothesize that processing conspecifics stimuli requires both chemosensory systems, and thus our results will show shared patterns of activity in olfactory and vomeronasal structures. Were the hypothesis not true, the activity of the vomeronasal structures would be independent of that of the main olfactory system. In the c-Fos analysis, we assessed the activation elicited by neutral olfactory or male stimuli in a broader network. Male urine induced a significantly higher activity in the vomeronasal system compared to that induced by a neutral odorant. Concerning the olfactory system, only the cortex–amygdala transition area showed significant activation. No differential c-Fos expression was found in the reward system and the basolateral amygdala. These functional patterns in the chemosensory circuitry reveal a strong top-down control of the amygdala over both olfactory bulbs, suggesting an active role of the amygdala in the integration of chemosensory information directing the activity of the bulbs during environmental exploration.
first_indexed 2024-12-10T07:43:20Z
format Article
id doaj.art-6ef981a963c64fef881b777539e57335
institution Directory Open Access Journal
issn 1662-5129
language English
last_indexed 2024-12-10T07:43:20Z
publishDate 2022-09-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Neuroanatomy
spelling doaj.art-6ef981a963c64fef881b777539e573352022-12-22T01:57:15ZengFrontiers Media S.A.Frontiers in Neuroanatomy1662-51292022-09-011610.3389/fnana.2022.988015988015Neural activity patterns in the chemosensory network encoding vomeronasal and olfactory information in miceCecília Pardo-Bellver0Manuel E. Vila-Martin1Manuel E. Vila-Martin2Sergio Martínez-Bellver3María Villafranca-Faus4Anna Teruel-Sanchis5Anna Teruel-Sanchis6Camila A. Savarelli-Balsamo7Camila A. Savarelli-Balsamo8Sylwia M. Drabik9Sylwia M. Drabik10Joana Martínez-Ricós11Ana Cervera-Ferri12Fernando Martínez-García13Enrique Lanuza14Vicent Teruel-Martí15Department of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, SpainDepartment of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, SpainLaboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, SpainLaboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, SpainLaboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, SpainDepartment of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, SpainLaboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, SpainDepartment of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, SpainLaboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, SpainDepartment of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, SpainDepartment of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Kraków, PolandLaboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, SpainLaboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, SpainFaculty of Health Sciences, Pre-Departmental Unit of Medicine, Jaume I University, Castellón de la Plana, SpainDepartment of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, SpainLaboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, SpainRodents detect chemical information mainly through the olfactory and vomeronasal systems, which play complementary roles to orchestrate appropriate behavioral responses. To characterize the integration of chemosensory information, we have performed electrophysiological and c-Fos studies of the bulbo–amygdalar network in freely behaving female mice exploring neutral or conspecific stimuli. We hypothesize that processing conspecifics stimuli requires both chemosensory systems, and thus our results will show shared patterns of activity in olfactory and vomeronasal structures. Were the hypothesis not true, the activity of the vomeronasal structures would be independent of that of the main olfactory system. In the c-Fos analysis, we assessed the activation elicited by neutral olfactory or male stimuli in a broader network. Male urine induced a significantly higher activity in the vomeronasal system compared to that induced by a neutral odorant. Concerning the olfactory system, only the cortex–amygdala transition area showed significant activation. No differential c-Fos expression was found in the reward system and the basolateral amygdala. These functional patterns in the chemosensory circuitry reveal a strong top-down control of the amygdala over both olfactory bulbs, suggesting an active role of the amygdala in the integration of chemosensory information directing the activity of the bulbs during environmental exploration.https://www.frontiersin.org/articles/10.3389/fnana.2022.988015/fullamygdalaGranger causalityaccessory olfactory systemoscillationsc-Fos
spellingShingle Cecília Pardo-Bellver
Manuel E. Vila-Martin
Manuel E. Vila-Martin
Sergio Martínez-Bellver
María Villafranca-Faus
Anna Teruel-Sanchis
Anna Teruel-Sanchis
Camila A. Savarelli-Balsamo
Camila A. Savarelli-Balsamo
Sylwia M. Drabik
Sylwia M. Drabik
Joana Martínez-Ricós
Ana Cervera-Ferri
Fernando Martínez-García
Enrique Lanuza
Vicent Teruel-Martí
Neural activity patterns in the chemosensory network encoding vomeronasal and olfactory information in mice
Frontiers in Neuroanatomy
amygdala
Granger causality
accessory olfactory system
oscillations
c-Fos
title Neural activity patterns in the chemosensory network encoding vomeronasal and olfactory information in mice
title_full Neural activity patterns in the chemosensory network encoding vomeronasal and olfactory information in mice
title_fullStr Neural activity patterns in the chemosensory network encoding vomeronasal and olfactory information in mice
title_full_unstemmed Neural activity patterns in the chemosensory network encoding vomeronasal and olfactory information in mice
title_short Neural activity patterns in the chemosensory network encoding vomeronasal and olfactory information in mice
title_sort neural activity patterns in the chemosensory network encoding vomeronasal and olfactory information in mice
topic amygdala
Granger causality
accessory olfactory system
oscillations
c-Fos
url https://www.frontiersin.org/articles/10.3389/fnana.2022.988015/full
work_keys_str_mv AT ceciliapardobellver neuralactivitypatternsinthechemosensorynetworkencodingvomeronasalandolfactoryinformationinmice
AT manuelevilamartin neuralactivitypatternsinthechemosensorynetworkencodingvomeronasalandolfactoryinformationinmice
AT manuelevilamartin neuralactivitypatternsinthechemosensorynetworkencodingvomeronasalandolfactoryinformationinmice
AT sergiomartinezbellver neuralactivitypatternsinthechemosensorynetworkencodingvomeronasalandolfactoryinformationinmice
AT mariavillafrancafaus neuralactivitypatternsinthechemosensorynetworkencodingvomeronasalandolfactoryinformationinmice
AT annateruelsanchis neuralactivitypatternsinthechemosensorynetworkencodingvomeronasalandolfactoryinformationinmice
AT annateruelsanchis neuralactivitypatternsinthechemosensorynetworkencodingvomeronasalandolfactoryinformationinmice
AT camilaasavarellibalsamo neuralactivitypatternsinthechemosensorynetworkencodingvomeronasalandolfactoryinformationinmice
AT camilaasavarellibalsamo neuralactivitypatternsinthechemosensorynetworkencodingvomeronasalandolfactoryinformationinmice
AT sylwiamdrabik neuralactivitypatternsinthechemosensorynetworkencodingvomeronasalandolfactoryinformationinmice
AT sylwiamdrabik neuralactivitypatternsinthechemosensorynetworkencodingvomeronasalandolfactoryinformationinmice
AT joanamartinezricos neuralactivitypatternsinthechemosensorynetworkencodingvomeronasalandolfactoryinformationinmice
AT anacerveraferri neuralactivitypatternsinthechemosensorynetworkencodingvomeronasalandolfactoryinformationinmice
AT fernandomartinezgarcia neuralactivitypatternsinthechemosensorynetworkencodingvomeronasalandolfactoryinformationinmice
AT enriquelanuza neuralactivitypatternsinthechemosensorynetworkencodingvomeronasalandolfactoryinformationinmice
AT vicentteruelmarti neuralactivitypatternsinthechemosensorynetworkencodingvomeronasalandolfactoryinformationinmice