Study of Solid Calcium Diglyceroxide for Biodiesel Production from Waste Cooking Oil Using a High Speed Homogenizer

Biodiesel has been one of the potential candidates in the field of renewable energy due to its biodegradability and non-toxicity in the natural environment. In addition, due to its high boiling point, the transportation of biodiesel is much safer than that of conventional fuel. However, the cost rem...

Full description

Bibliographic Details
Main Authors: Ming-Chien Hsiao, Li-Wen Chang, Shuhn-Shyurng Hou
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/17/3205
Description
Summary:Biodiesel has been one of the potential candidates in the field of renewable energy due to its biodegradability and non-toxicity in the natural environment. In addition, due to its high boiling point, the transportation of biodiesel is much safer than that of conventional fuel. However, the cost remains a challenge for the development of biodiesel. In this study, a homogenizer system, which can intensively minimize raw materials, is utilized as an effective approach to assist the production of both the calcium diglyceroxide (CaDG) catalyst and biodiesel. Several operational factors were evaluated to obtain the optimal conditions, and a desirable biodiesel conversion of 77.24% was achieved at a methanol-to-oil molar ratio of 7, with 2.0 g of calcium diglyceroxide, a rotation speed of 7000 rpm, a reaction temperature of 65 °C and a reaction period of 90 min.
ISSN:1996-1073