Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent

Objective: Our aim is to define the capabilities of radiomics in predicting pseudoprogression from pre-treatment MR images in patients diagnosed with high-grade gliomas using T1 non-contrast-enhanced and contrast-enhanced images. Material & methods: In this retrospective IRB-approved study,...

Full description

Bibliographic Details
Main Authors: Orkhan Mammadov, Burak Han Akkurt, Manfred Musigmann, Asena Petek Ari, David A. Blömer, Dilek N.G. Kasap, Dylan J.H.A. Henssen, Nabila Gala Nacul, Elisabeth Sartoretti, Thomas Sartoretti, Philipp Backhaus, Christian Thomas, Walter Stummer, Walter Heindel, Manoj Mannil
Format: Article
Language:English
Published: Elsevier 2022-08-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844022013111
_version_ 1818009965019791360
author Orkhan Mammadov
Burak Han Akkurt
Manfred Musigmann
Asena Petek Ari
David A. Blömer
Dilek N.G. Kasap
Dylan J.H.A. Henssen
Nabila Gala Nacul
Elisabeth Sartoretti
Thomas Sartoretti
Philipp Backhaus
Christian Thomas
Walter Stummer
Walter Heindel
Manoj Mannil
author_facet Orkhan Mammadov
Burak Han Akkurt
Manfred Musigmann
Asena Petek Ari
David A. Blömer
Dilek N.G. Kasap
Dylan J.H.A. Henssen
Nabila Gala Nacul
Elisabeth Sartoretti
Thomas Sartoretti
Philipp Backhaus
Christian Thomas
Walter Stummer
Walter Heindel
Manoj Mannil
author_sort Orkhan Mammadov
collection DOAJ
description Objective: Our aim is to define the capabilities of radiomics in predicting pseudoprogression from pre-treatment MR images in patients diagnosed with high-grade gliomas using T1 non-contrast-enhanced and contrast-enhanced images. Material & methods: In this retrospective IRB-approved study, image segmentation of high-grade gliomas was semi-automatically performed using 3D Slicer. Non-contrast-enhanced T1-weighted images and contrast-enhanced T1-weighted images were used prior to surgical therapy or radio-chemotherapy. Imaging data was split into a training sample and an independent test sample at random. We extracted 107 radiomic features by use of PyRadiomics. Feature selection and model construction were performed using Generalized Boosted Regression Models (GBM). Results: Our cohort included 124 patients (female: n = 53), diagnosed with progressive (n = 61) and pseudoprogressive disease (n = 63) of primary high-grade gliomas. Based on non-contrast-enhanced T1-weighted images of the independent test sample, the mean area under the curve (AUC), mean sensitivity, mean specificity and mean accuracy of our model were 0.651 [0.576, 0.761], 0.616 [0.417, 0.833], 0.578 [0.417, 0.750] and 0.597 [0.500, 0.708] to predict the development of pseudoprogression. In comparison, the independent test data of contrast-enhanced T1-weighted images yielded significantly higher values of AUC = 0.819 [0.760, 0.872], sensitivity = 0.817 [0.750, 0.833], specificity = 0.723 [0.583, 0.833] and accuracy = 0.770 [0.687, 0.833]. Conclusion: Our findings show that it is possible to predict pseudoprogression of high-grade gliomas with a Radiomics model using contrast-enhanced T1-weighted images with comparatively good discriminatory power. The use of a contrast agent results in a clear added value.
first_indexed 2024-04-14T05:49:29Z
format Article
id doaj.art-6f121726d452463daf172ebc1b1765e3
institution Directory Open Access Journal
issn 2405-8440
language English
last_indexed 2024-04-14T05:49:29Z
publishDate 2022-08-01
publisher Elsevier
record_format Article
series Heliyon
spelling doaj.art-6f121726d452463daf172ebc1b1765e32022-12-22T02:09:10ZengElsevierHeliyon2405-84402022-08-0188e10023Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agentOrkhan Mammadov0Burak Han Akkurt1Manfred Musigmann2Asena Petek Ari3David A. Blömer4Dilek N.G. Kasap5Dylan J.H.A. Henssen6Nabila Gala Nacul7Elisabeth Sartoretti8Thomas Sartoretti9Philipp Backhaus10Christian Thomas11Walter Stummer12Walter Heindel13Manoj Mannil14University Clinic for Radiology, Westfälische Wilhelms-University Muenster and University Hospital Muenster, Albert-Schweitzer-Campus 1, DE-48149 Muenster, GermanyUniversity Clinic for Radiology, Westfälische Wilhelms-University Muenster and University Hospital Muenster, Albert-Schweitzer-Campus 1, DE-48149 Muenster, GermanyUniversity Clinic for Radiology, Westfälische Wilhelms-University Muenster and University Hospital Muenster, Albert-Schweitzer-Campus 1, DE-48149 Muenster, GermanyUniversity Clinic for Radiology, Westfälische Wilhelms-University Muenster and University Hospital Muenster, Albert-Schweitzer-Campus 1, DE-48149 Muenster, GermanyUniversity Clinic for Radiology, Westfälische Wilhelms-University Muenster and University Hospital Muenster, Albert-Schweitzer-Campus 1, DE-48149 Muenster, GermanyUniversity Clinic for Radiology, Westfälische Wilhelms-University Muenster and University Hospital Muenster, Albert-Schweitzer-Campus 1, DE-48149 Muenster, GermanyDepartment of Medical Imaging, Radboud University Medical Center, Radboud University, 6500HB Nijmegen, the NetherlandsUniversity Clinic for Radiology, Westfälische Wilhelms-University Muenster and University Hospital Muenster, Albert-Schweitzer-Campus 1, DE-48149 Muenster, GermanyFaculty of Medicine, University of Zurich, Zurich, SwitzerlandFaculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the NetherlandsDepartment of Nuclear Medicine, Westfälische Wilhelms-University Muenster and University Hospital Muenster, Albert-Schweitzer-Campus 1, DE-48149 Muenster, Germany; European Institute for Molecular Imaging, Westfälische Wilhelms-University Muenster and University Hospital Muenster, Albert-Schweitzer-Campus 1, DE-48149 Muenster, GermanyInstitute of Neuropathology, Westfälische Wilhelms-University Muenster and University Hospital Muenster, Albert-Schweitzer-Campus 1, DE-48149 Muenster, GermanyDepartment of Neurosurgery, Westfälische Wilhelms-University Muenster and University Hospital Muenster, Albert-Schweitzer-Campus 1, DE-48149 Muenster, GermanyUniversity Clinic for Radiology, Westfälische Wilhelms-University Muenster and University Hospital Muenster, Albert-Schweitzer-Campus 1, DE-48149 Muenster, GermanyUniversity Clinic for Radiology, Westfälische Wilhelms-University Muenster and University Hospital Muenster, Albert-Schweitzer-Campus 1, DE-48149 Muenster, Germany; Corresponding author.Objective: Our aim is to define the capabilities of radiomics in predicting pseudoprogression from pre-treatment MR images in patients diagnosed with high-grade gliomas using T1 non-contrast-enhanced and contrast-enhanced images. Material & methods: In this retrospective IRB-approved study, image segmentation of high-grade gliomas was semi-automatically performed using 3D Slicer. Non-contrast-enhanced T1-weighted images and contrast-enhanced T1-weighted images were used prior to surgical therapy or radio-chemotherapy. Imaging data was split into a training sample and an independent test sample at random. We extracted 107 radiomic features by use of PyRadiomics. Feature selection and model construction were performed using Generalized Boosted Regression Models (GBM). Results: Our cohort included 124 patients (female: n = 53), diagnosed with progressive (n = 61) and pseudoprogressive disease (n = 63) of primary high-grade gliomas. Based on non-contrast-enhanced T1-weighted images of the independent test sample, the mean area under the curve (AUC), mean sensitivity, mean specificity and mean accuracy of our model were 0.651 [0.576, 0.761], 0.616 [0.417, 0.833], 0.578 [0.417, 0.750] and 0.597 [0.500, 0.708] to predict the development of pseudoprogression. In comparison, the independent test data of contrast-enhanced T1-weighted images yielded significantly higher values of AUC = 0.819 [0.760, 0.872], sensitivity = 0.817 [0.750, 0.833], specificity = 0.723 [0.583, 0.833] and accuracy = 0.770 [0.687, 0.833]. Conclusion: Our findings show that it is possible to predict pseudoprogression of high-grade gliomas with a Radiomics model using contrast-enhanced T1-weighted images with comparatively good discriminatory power. The use of a contrast agent results in a clear added value.http://www.sciencedirect.com/science/article/pii/S2405844022013111Artificial intelligenceGliomaPatient outcome assessment
spellingShingle Orkhan Mammadov
Burak Han Akkurt
Manfred Musigmann
Asena Petek Ari
David A. Blömer
Dilek N.G. Kasap
Dylan J.H.A. Henssen
Nabila Gala Nacul
Elisabeth Sartoretti
Thomas Sartoretti
Philipp Backhaus
Christian Thomas
Walter Stummer
Walter Heindel
Manoj Mannil
Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent
Heliyon
Artificial intelligence
Glioma
Patient outcome assessment
title Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent
title_full Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent
title_fullStr Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent
title_full_unstemmed Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent
title_short Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent
title_sort radiomics for pseudoprogression prediction in high grade gliomas added value of mr contrast agent
topic Artificial intelligence
Glioma
Patient outcome assessment
url http://www.sciencedirect.com/science/article/pii/S2405844022013111
work_keys_str_mv AT orkhanmammadov radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT burakhanakkurt radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT manfredmusigmann radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT asenapetekari radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT davidablomer radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT dilekngkasap radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT dylanjhahenssen radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT nabilagalanacul radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT elisabethsartoretti radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT thomassartoretti radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT philippbackhaus radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT christianthomas radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT walterstummer radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT walterheindel radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT manojmannil radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent