Controlling migration of a pair of correlated particles by doubly modulated fields

The resonant tunneling of correlated bosons in optical lattices is investigated in the presence of doubly modulated AC-fields. The effective hopping coefficients are density-dependent. We can make use of this property to control the migration of a pair of strongly interacting particles in one- or tw...

Full description

Bibliographic Details
Main Authors: Yi Zheng, Shi-Jie Yang
Format: Article
Language:English
Published: IOP Publishing 2015-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/18/1/013005
Description
Summary:The resonant tunneling of correlated bosons in optical lattices is investigated in the presence of doubly modulated AC-fields. The effective hopping coefficients are density-dependent. We can make use of this property to control the migration of a pair of strongly interacting particles in one- or two-dimensional uniform lattices via properly manipulating the phases, frequencies and amplitudes of the driven fields. We design a bifurcating quantum motion of the pair in contrast to the coherent quantum walk of the correlated pair in the absence of external fields.
ISSN:1367-2630