How Does Pyridoxamine Inhibit the Formation of Advanced Glycation End Products? The Role of Its Primary Antioxidant Activity

Pyridoxamine, one of the natural forms of vitamin B<sub>6</sub>, is known to be an effective inhibitor of the formation of advanced glycation end products (AGEs), which are closely related to various human diseases. Pyridoxamine forms stable complexes with metal ions that catalyze the ox...

Full description

Bibliographic Details
Main Authors: Rafael Ramis, Joaquín Ortega-Castro, Carmen Caballero, Rodrigo Casasnovas, Antonia Cerrillo, Bartolomé Vilanova, Miquel Adrover, Juan Frau
Format: Article
Language:English
Published: MDPI AG 2019-09-01
Series:Antioxidants
Subjects:
Online Access:https://www.mdpi.com/2076-3921/8/9/344
_version_ 1797701805490044928
author Rafael Ramis
Joaquín Ortega-Castro
Carmen Caballero
Rodrigo Casasnovas
Antonia Cerrillo
Bartolomé Vilanova
Miquel Adrover
Juan Frau
author_facet Rafael Ramis
Joaquín Ortega-Castro
Carmen Caballero
Rodrigo Casasnovas
Antonia Cerrillo
Bartolomé Vilanova
Miquel Adrover
Juan Frau
author_sort Rafael Ramis
collection DOAJ
description Pyridoxamine, one of the natural forms of vitamin B<sub>6</sub>, is known to be an effective inhibitor of the formation of advanced glycation end products (AGEs), which are closely related to various human diseases. Pyridoxamine forms stable complexes with metal ions that catalyze the oxidative reactions taking place in the advanced stages of the protein glycation cascade. It also reacts with reactive carbonyl compounds generated as byproducts of protein glycation, thereby preventing further protein damage. We applied Density Functional Theory to study the primary antioxidant activity of pyridoxamine towards three oxygen-centered radicals (&#8226;OOH, &#8226;OOCH<sub>3</sub> and &#8226;OCH<sub>3</sub>) to find out whether this activity may also play a crucial role in the context of protein glycation inhibition. Our results show that, at physiological pH, pyridoxamine can trap the &#8226;OCH<sub>3</sub> radical, in both aqueous and lipidic media, with rate constants in the diffusion limit (&gt;1.0 &#215; 10<sup>8</sup> M<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula> s<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>). The quickest pathways involve the transfer of the hydrogen atoms from the protonated pyridine nitrogen, the protonated amino group or the phenolic group. Its reactivity towards &#8226;OOH and &#8226;OOCH<sub>3</sub> is smaller, but pyridoxamine can still scavenge them with moderate rate constants in aqueous media. Since reactive oxygen species are also involved in the formation of AGEs, these results highlight that the antioxidant capacity of pyridoxamine is also relevant to explain its inhibitory role on the glycation process.
first_indexed 2024-03-12T04:41:03Z
format Article
id doaj.art-6f1e31400dfc49639e0f66ec7cac136c
institution Directory Open Access Journal
issn 2076-3921
language English
last_indexed 2024-03-12T04:41:03Z
publishDate 2019-09-01
publisher MDPI AG
record_format Article
series Antioxidants
spelling doaj.art-6f1e31400dfc49639e0f66ec7cac136c2023-09-03T09:38:58ZengMDPI AGAntioxidants2076-39212019-09-018934410.3390/antiox8090344antiox8090344How Does Pyridoxamine Inhibit the Formation of Advanced Glycation End Products? The Role of Its Primary Antioxidant ActivityRafael Ramis0Joaquín Ortega-Castro1Carmen Caballero2Rodrigo Casasnovas3Antonia Cerrillo4Bartolomé Vilanova5Miquel Adrover6Juan Frau7Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, SpainInstitut Universitari d’Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, SpainInstitut Universitari d’Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, SpainInstitut Universitari d’Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, SpainInstitut Universitari d’Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, SpainInstitut Universitari d’Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, SpainInstitut Universitari d’Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, SpainInstitut Universitari d’Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, SpainPyridoxamine, one of the natural forms of vitamin B<sub>6</sub>, is known to be an effective inhibitor of the formation of advanced glycation end products (AGEs), which are closely related to various human diseases. Pyridoxamine forms stable complexes with metal ions that catalyze the oxidative reactions taking place in the advanced stages of the protein glycation cascade. It also reacts with reactive carbonyl compounds generated as byproducts of protein glycation, thereby preventing further protein damage. We applied Density Functional Theory to study the primary antioxidant activity of pyridoxamine towards three oxygen-centered radicals (&#8226;OOH, &#8226;OOCH<sub>3</sub> and &#8226;OCH<sub>3</sub>) to find out whether this activity may also play a crucial role in the context of protein glycation inhibition. Our results show that, at physiological pH, pyridoxamine can trap the &#8226;OCH<sub>3</sub> radical, in both aqueous and lipidic media, with rate constants in the diffusion limit (&gt;1.0 &#215; 10<sup>8</sup> M<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula> s<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>). The quickest pathways involve the transfer of the hydrogen atoms from the protonated pyridine nitrogen, the protonated amino group or the phenolic group. Its reactivity towards &#8226;OOH and &#8226;OOCH<sub>3</sub> is smaller, but pyridoxamine can still scavenge them with moderate rate constants in aqueous media. Since reactive oxygen species are also involved in the formation of AGEs, these results highlight that the antioxidant capacity of pyridoxamine is also relevant to explain its inhibitory role on the glycation process.https://www.mdpi.com/2076-3921/8/9/344pyridoxamineDFTAGEsinhibitionROS
spellingShingle Rafael Ramis
Joaquín Ortega-Castro
Carmen Caballero
Rodrigo Casasnovas
Antonia Cerrillo
Bartolomé Vilanova
Miquel Adrover
Juan Frau
How Does Pyridoxamine Inhibit the Formation of Advanced Glycation End Products? The Role of Its Primary Antioxidant Activity
Antioxidants
pyridoxamine
DFT
AGEs
inhibition
ROS
title How Does Pyridoxamine Inhibit the Formation of Advanced Glycation End Products? The Role of Its Primary Antioxidant Activity
title_full How Does Pyridoxamine Inhibit the Formation of Advanced Glycation End Products? The Role of Its Primary Antioxidant Activity
title_fullStr How Does Pyridoxamine Inhibit the Formation of Advanced Glycation End Products? The Role of Its Primary Antioxidant Activity
title_full_unstemmed How Does Pyridoxamine Inhibit the Formation of Advanced Glycation End Products? The Role of Its Primary Antioxidant Activity
title_short How Does Pyridoxamine Inhibit the Formation of Advanced Glycation End Products? The Role of Its Primary Antioxidant Activity
title_sort how does pyridoxamine inhibit the formation of advanced glycation end products the role of its primary antioxidant activity
topic pyridoxamine
DFT
AGEs
inhibition
ROS
url https://www.mdpi.com/2076-3921/8/9/344
work_keys_str_mv AT rafaelramis howdoespyridoxamineinhibittheformationofadvancedglycationendproductstheroleofitsprimaryantioxidantactivity
AT joaquinortegacastro howdoespyridoxamineinhibittheformationofadvancedglycationendproductstheroleofitsprimaryantioxidantactivity
AT carmencaballero howdoespyridoxamineinhibittheformationofadvancedglycationendproductstheroleofitsprimaryantioxidantactivity
AT rodrigocasasnovas howdoespyridoxamineinhibittheformationofadvancedglycationendproductstheroleofitsprimaryantioxidantactivity
AT antoniacerrillo howdoespyridoxamineinhibittheformationofadvancedglycationendproductstheroleofitsprimaryantioxidantactivity
AT bartolomevilanova howdoespyridoxamineinhibittheformationofadvancedglycationendproductstheroleofitsprimaryantioxidantactivity
AT miqueladrover howdoespyridoxamineinhibittheformationofadvancedglycationendproductstheroleofitsprimaryantioxidantactivity
AT juanfrau howdoespyridoxamineinhibittheformationofadvancedglycationendproductstheroleofitsprimaryantioxidantactivity