Volatile Organic Compounds Frequently Identified after Hyperbaric Hyperoxic Exposure: The VAPOR Library
Diving or hyperbaric oxygen therapy with increased partial pressures of oxygen (pO<sub>2</sub>) can have adverse effects such as central nervous system oxygen toxicity or pulmonary oxygen toxicity (POT). Prevention of POT has been a topic of interest for several decades. One of the most...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-05-01
|
Series: | Metabolites |
Subjects: | |
Online Access: | https://www.mdpi.com/2218-1989/12/5/470 |
_version_ | 1797497924593123328 |
---|---|
author | Feiko J. M. de Jong Paul Brinkman Thijs T. Wingelaar Pieter-Jan A. M. van Ooij Rob A. van Hulst |
author_facet | Feiko J. M. de Jong Paul Brinkman Thijs T. Wingelaar Pieter-Jan A. M. van Ooij Rob A. van Hulst |
author_sort | Feiko J. M. de Jong |
collection | DOAJ |
description | Diving or hyperbaric oxygen therapy with increased partial pressures of oxygen (pO<sub>2</sub>) can have adverse effects such as central nervous system oxygen toxicity or pulmonary oxygen toxicity (POT). Prevention of POT has been a topic of interest for several decades. One of the most promising techniques to determine early signs of POT is the analysis of volatile organic compounds (VOCs) in exhaled breath. We reanalyzed the data of five studies to compose a library of potential exhaled markers for the early detection of POT. GC-MS data from five hyperbaric hyperoxic studies were collected. Wilcoxon signed-rank tests were used to compare baseline- and postexposure measurements; all ion fragments that significantly varied were compared by similarity using the National Institute of Standards and Technology (NIST) library. All identified molecules were cross-referenced with open-source databases and other scientific publications on VOCs to exclude compounds that occurred as a result of contamination, and to identify the compounds most likely to occur due to hyperbaric hyperoxic exposure. After identification and removal of contaminants, 29 compounds were included in the library. This library of hyperbaric hyperoxic-related VOCs can help to advance the development of an early noninvasive marker of POT. It enables validation by others who use more targeted MS-related techniques, instead of full-scale GC-MS, for their exhaled VOC research. |
first_indexed | 2024-03-10T03:26:04Z |
format | Article |
id | doaj.art-6f27c86952534ea1b4bd4657a11086b6 |
institution | Directory Open Access Journal |
issn | 2218-1989 |
language | English |
last_indexed | 2024-03-10T03:26:04Z |
publishDate | 2022-05-01 |
publisher | MDPI AG |
record_format | Article |
series | Metabolites |
spelling | doaj.art-6f27c86952534ea1b4bd4657a11086b62023-11-23T12:07:56ZengMDPI AGMetabolites2218-19892022-05-0112547010.3390/metabo12050470Volatile Organic Compounds Frequently Identified after Hyperbaric Hyperoxic Exposure: The VAPOR LibraryFeiko J. M. de Jong0Paul Brinkman1Thijs T. Wingelaar2Pieter-Jan A. M. van Ooij3Rob A. van Hulst4Royal Netherlands Navy Diving and Submarine Medical Centre, 1780 CA Den Helder, The NetherlandsDepartment of Respiratory Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, 1100 DD Amsterdam, The NetherlandsRoyal Netherlands Navy Diving and Submarine Medical Centre, 1780 CA Den Helder, The NetherlandsRoyal Netherlands Navy Diving and Submarine Medical Centre, 1780 CA Den Helder, The NetherlandsDepartment of Anesthesiology, Amsterdam UMC, Location AMC, 1100 DD Amsterdam, The NetherlandsDiving or hyperbaric oxygen therapy with increased partial pressures of oxygen (pO<sub>2</sub>) can have adverse effects such as central nervous system oxygen toxicity or pulmonary oxygen toxicity (POT). Prevention of POT has been a topic of interest for several decades. One of the most promising techniques to determine early signs of POT is the analysis of volatile organic compounds (VOCs) in exhaled breath. We reanalyzed the data of five studies to compose a library of potential exhaled markers for the early detection of POT. GC-MS data from five hyperbaric hyperoxic studies were collected. Wilcoxon signed-rank tests were used to compare baseline- and postexposure measurements; all ion fragments that significantly varied were compared by similarity using the National Institute of Standards and Technology (NIST) library. All identified molecules were cross-referenced with open-source databases and other scientific publications on VOCs to exclude compounds that occurred as a result of contamination, and to identify the compounds most likely to occur due to hyperbaric hyperoxic exposure. After identification and removal of contaminants, 29 compounds were included in the library. This library of hyperbaric hyperoxic-related VOCs can help to advance the development of an early noninvasive marker of POT. It enables validation by others who use more targeted MS-related techniques, instead of full-scale GC-MS, for their exhaled VOC research.https://www.mdpi.com/2218-1989/12/5/470hyperbaric oxygen therapyhyperoxiadiving and hyperbaric medicinepulmonary oxygen toxicityVOCexhaled breath markers |
spellingShingle | Feiko J. M. de Jong Paul Brinkman Thijs T. Wingelaar Pieter-Jan A. M. van Ooij Rob A. van Hulst Volatile Organic Compounds Frequently Identified after Hyperbaric Hyperoxic Exposure: The VAPOR Library Metabolites hyperbaric oxygen therapy hyperoxia diving and hyperbaric medicine pulmonary oxygen toxicity VOC exhaled breath markers |
title | Volatile Organic Compounds Frequently Identified after Hyperbaric Hyperoxic Exposure: The VAPOR Library |
title_full | Volatile Organic Compounds Frequently Identified after Hyperbaric Hyperoxic Exposure: The VAPOR Library |
title_fullStr | Volatile Organic Compounds Frequently Identified after Hyperbaric Hyperoxic Exposure: The VAPOR Library |
title_full_unstemmed | Volatile Organic Compounds Frequently Identified after Hyperbaric Hyperoxic Exposure: The VAPOR Library |
title_short | Volatile Organic Compounds Frequently Identified after Hyperbaric Hyperoxic Exposure: The VAPOR Library |
title_sort | volatile organic compounds frequently identified after hyperbaric hyperoxic exposure the vapor library |
topic | hyperbaric oxygen therapy hyperoxia diving and hyperbaric medicine pulmonary oxygen toxicity VOC exhaled breath markers |
url | https://www.mdpi.com/2218-1989/12/5/470 |
work_keys_str_mv | AT feikojmdejong volatileorganiccompoundsfrequentlyidentifiedafterhyperbarichyperoxicexposurethevaporlibrary AT paulbrinkman volatileorganiccompoundsfrequentlyidentifiedafterhyperbarichyperoxicexposurethevaporlibrary AT thijstwingelaar volatileorganiccompoundsfrequentlyidentifiedafterhyperbarichyperoxicexposurethevaporlibrary AT pieterjanamvanooij volatileorganiccompoundsfrequentlyidentifiedafterhyperbarichyperoxicexposurethevaporlibrary AT robavanhulst volatileorganiccompoundsfrequentlyidentifiedafterhyperbarichyperoxicexposurethevaporlibrary |