Improved Optoelectronic Characteristics of Ga-In co-Doped ZnO UV Photodetectors by Asymmetric Metal Contact Structure

Transparent Ga and In co-doped ZnO (ZnO:Ga-In) semiconductor thin films were deposited on Corning glass substrates by the sol-gel spin-coating process. The ZnO:Ga-In thin films were used as the sensing layer of metal–semiconductor–metal (MSM)-type ultraviolet (UV) photodetectors (PDs). In this study...

Full description

Bibliographic Details
Main Authors: Chien-Yie Tsay, Hsuan-Meng Tsai, Yun-Chi Chen
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/12/5/746
Description
Summary:Transparent Ga and In co-doped ZnO (ZnO:Ga-In) semiconductor thin films were deposited on Corning glass substrates by the sol-gel spin-coating process. The ZnO:Ga-In thin films were used as the sensing layer of metal–semiconductor–metal (MSM)-type ultraviolet (UV) photodetectors (PDs). In this study, the optoelectronic characteristics of ZnO:Ga-In MSM PDs with symmetrical interdigital electrodes (Al–Al) and asymmetrical interdigital electrodes (Al–Au) were compared. The as-prepared ZnO:Ga-In thin films were polycrystalline, and they had a single-phase hexagonal wurtzite structure and high transparency (~88.4%) in the visible region. The MSM-PDs with asymmetric electrodes had significantly reduced dark current (9.6 × 10<sup>−5</sup> A at 5 V) according to the current-voltage (I-V) characteristics and higher photoresponse properties than those of the MSM-PDs with symmetric electrodes, according to the current-time (I-t) characteristics. In addition, the Al–Au devices were self-powered without an applied bias voltage. The photocurrent was 6.0 × 10<sup>−5</sup> A; the sensitivity and responsivity were 0.25 and 0.03 mA/W, respectively, under UV illumination.
ISSN:2073-4352