Summary: | Customizing any trauma surgery requires prior planning by surgeons. Nowadays, the use of numerical tools is increasingly needed to facilitate this planning. The success of this analysis begins with the definition of all the mechanical constitutive models of the materials implied. Our target is the trabecular bone because almost all trauma surgeries are closely related to it. This work focuses on the experimental characterization of porcine trabecular tibiae and defining its best constitutive model. Therefore, different types of compression tests were performed with tibia samples. Once the potential constitutive models were defined, stress–strain state from numerical approaches were compared with the corresponding experimental results. Experimental results from uniaxial compression tests showed than trabecular bone exhibits clear anisotropy with more stiffness and strength when it is loaded in the tibia longitudinal direction. Results from confined compression tests confirmed that the plastic behavior of trabecular bone depends on the hydrostatic and deviatoric invariants, so an alternative formulation (crushable foam volumetric (CFV)) has been proposed to describe its behavior. A new method to obtain CFV characteristic parameters has been developed and validated. Predictions of the CFV model better describe trabecular bone mechanical behavior under confined conditions. In other cases, classical plasticity formulations work better.
|