The Design, Fabrication and Characterization of Grating Couplers for SiGe Photonic Integration Employing a Reflective Back Mirror

We propose and demonstrate an efficient grating coupler for integrated SiGe photonic devices. A bottom metal layer is adopted to enhance the coupling efficiency on the wafer backside. A low coupling loss of −1.34 dB and −0.79 dB can be theoretically obtained with optimal parameters for uniform and a...

Full description

Bibliographic Details
Main Authors: Qiang Huang, Yi Zhang, Jie Tang, Junqiang Sun
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/12/21/3789
Description
Summary:We propose and demonstrate an efficient grating coupler for integrated SiGe photonic devices. A bottom metal layer is adopted to enhance the coupling efficiency on the wafer backside. A low coupling loss of −1.34 dB and −0.79 dB can be theoretically obtained with optimal parameters for uniform and apodized grating couplers, respectively. The fabrication process is CMOS compatible without need of wafer bonding. The influence of fabrication errors on the coupling efficiency is analyzed in terms of substrate thickness, grating dimension and material refractive index. The results indicate a large tolerance for the deviations in practical fabrication. The measured coupling loss of the uniform grating is −2.7 dB at approximately 1465 nm with a 3 dB bandwidth of more than 40 nm. The proposed grating coupler provides a promising approach to realize efficient chip-fiber coupling for the SiGe photonic integration.
ISSN:2079-4991