Summary: | In this study, the performance of offshore wind turbines at low tip speed ratio (TSR) is studied using computational fluid dynamics (CFD), and the performance of offshore wind turbines at low tip speed ratio (TSR) is improved by revising the blade structure. First, the parameters of vertical axis offshore wind turbine are designed based on the compactness iteration, a CFD simulation model is established, and the turbulence model is selected through simulation analysis to verify the independence of grid and time step. Compared with previous experimental results, it is shown that the two-dimensional simulation only considers the plane turbulence effect, and the simulation turbulence effect performs more obviously at a high tip ratio, while the three-dimensional simulation turbulence effect has well-fitting performance at high tip ratio. Second, a J-shaped blade with optimized lower surface is proposed. The study showed that the optimized J-shaped blade significantly improved its upwind torque and wind energy capture rate. Finally, the performance of the optimized J-blade offshore wind turbine is analyzed.
|