Summary: | The Segment Anything Model (SAM) is a versatile image segmentation model that enables zero-shot segmentation of various objects in any image using prompts, including bounding boxes, points, texts, and more. However, studies have shown that the SAM performs poorly in agricultural tasks like crop disease segmentation and pest segmentation. To address this issue, the agricultural SAM adapter (ASA) is proposed, which incorporates agricultural domain expertise into the segmentation model through a simple but effective adapter technique. By leveraging the distinctive characteristics of agricultural image segmentation and suitable user prompts, the model enables zero-shot segmentation, providing a new approach for zero-sample image segmentation in the agricultural domain. Comprehensive experiments are conducted to assess the efficacy of the ASA compared to the default SAM. The results show that the proposed model achieves significant improvements on all 12 agricultural segmentation tasks. Notably, the average Dice score improved by 41.48% on two coffee-leaf-disease segmentation tasks.
|