Static Analysis of Run-Time Errors in Embedded Real-Time Parallel C Programs

We present a static analysis by Abstract Interpretation to check for run-time errors in parallel and multi-threaded C programs. Following our work on Astr\'ee, we focus on embedded critical programs without recursion nor dynamic memory allocation, but extend the analysis to a static set of thre...

Full description

Bibliographic Details
Main Author: Antoine Miné
Format: Article
Language:English
Published: Logical Methods in Computer Science e.V. 2012-03-01
Series:Logical Methods in Computer Science
Subjects:
Online Access:https://lmcs.episciences.org/799/pdf
Description
Summary:We present a static analysis by Abstract Interpretation to check for run-time errors in parallel and multi-threaded C programs. Following our work on Astr\'ee, we focus on embedded critical programs without recursion nor dynamic memory allocation, but extend the analysis to a static set of threads communicating implicitly through a shared memory and explicitly using a finite set of mutual exclusion locks, and scheduled according to a real-time scheduling policy and fixed priorities. Our method is thread-modular. It is based on a slightly modified non-parallel analysis that, when analyzing a thread, applies and enriches an abstract set of thread interferences. An iterator then re-analyzes each thread in turn until interferences stabilize. We prove the soundness of our method with respect to the sequential consistency semantics, but also with respect to a reasonable weakly consistent memory semantics. We also show how to take into account mutual exclusion and thread priorities through a partitioning over an abstraction of the scheduler state. We present preliminary experimental results analyzing an industrial program with our prototype, Th\'es\'ee, and demonstrate the scalability of our approach.
ISSN:1860-5974