Summary: | We present a static analysis by Abstract Interpretation to check for run-time
errors in parallel and multi-threaded C programs. Following our work on
Astr\'ee, we focus on embedded critical programs without recursion nor dynamic
memory allocation, but extend the analysis to a static set of threads
communicating implicitly through a shared memory and explicitly using a finite
set of mutual exclusion locks, and scheduled according to a real-time
scheduling policy and fixed priorities. Our method is thread-modular. It is
based on a slightly modified non-parallel analysis that, when analyzing a
thread, applies and enriches an abstract set of thread interferences. An
iterator then re-analyzes each thread in turn until interferences stabilize. We
prove the soundness of our method with respect to the sequential consistency
semantics, but also with respect to a reasonable weakly consistent memory
semantics. We also show how to take into account mutual exclusion and thread
priorities through a partitioning over an abstraction of the scheduler state.
We present preliminary experimental results analyzing an industrial program
with our prototype, Th\'es\'ee, and demonstrate the scalability of our
approach.
|