Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments

<p>Estimates of the direct radiative effect (DRE) from absorbing smoke aerosols over the southeast Atlantic Ocean (SAO) require simulation of the microphysical and optical properties of stratocumulus clouds as well as of the altitude and shortwave (SW) optical properties of biomass burning aer...

Full description

Bibliographic Details
Main Authors: M. Mallet, P. Nabat, P. Zuidema, J. Redemann, A. M. Sayer, M. Stengel, S. Schmidt, S. Cochrane, S. Burton, R. Ferrare, K. Meyer, P. Saide, H. Jethva, O. Torres, R. Wood, D. Saint Martin, R. Roehrig, C. Hsu, P. Formenti
Format: Article
Language:English
Published: Copernicus Publications 2019-04-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/4963/2019/acp-19-4963-2019.pdf
_version_ 1828771868035776512
author M. Mallet
P. Nabat
P. Zuidema
J. Redemann
A. M. Sayer
A. M. Sayer
M. Stengel
S. Schmidt
S. Cochrane
S. Burton
R. Ferrare
K. Meyer
P. Saide
H. Jethva
H. Jethva
O. Torres
R. Wood
D. Saint Martin
R. Roehrig
C. Hsu
P. Formenti
author_facet M. Mallet
P. Nabat
P. Zuidema
J. Redemann
A. M. Sayer
A. M. Sayer
M. Stengel
S. Schmidt
S. Cochrane
S. Burton
R. Ferrare
K. Meyer
P. Saide
H. Jethva
H. Jethva
O. Torres
R. Wood
D. Saint Martin
R. Roehrig
C. Hsu
P. Formenti
author_sort M. Mallet
collection DOAJ
description <p>Estimates of the direct radiative effect (DRE) from absorbing smoke aerosols over the southeast Atlantic Ocean (SAO) require simulation of the microphysical and optical properties of stratocumulus clouds as well as of the altitude and shortwave (SW) optical properties of biomass burning aerosols (BBAs). In this study, we take advantage of the large number of observations acquired during the ObseRvations of Aerosols above Clouds and their intEractionS (ORACLES-2016) and Layered Atlantic Smoke Interactions with Clouds (LASIC) projects during September 2016 and compare them with datasets from the ALADIN-Climate (Aire Limitée Adaptation dynamique Développement InterNational) regional model. The model provides a good representation of the liquid water path but the low cloud fraction is underestimated compared to satellite data. The modeled total-column smoke aerosol optical depth (AOD) and above-cloud AOD are consistent (<span class="inline-formula">∼0.7</span> over continental sources and <span class="inline-formula">∼0.3</span> over the SAO at 550&thinsp;nm) with the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2), Ozone Monitoring Instrument (OMI) or Moderate Resolution Imaging Spectroradiometer (MODIS) data. The simulations indicate smoke transport over the SAO occurs mainly between 2 and 4&thinsp;km, consistent with surface and aircraft lidar observations. The BBA single scattering albedo is slightly overestimated compared to the Aerosol Robotic Network (AERONET) and more significantly when compared to Ascension Island surface observations. The difference could be due to the absence of internal mixing treatment in the ALADIN-Climate model. The SSA overestimate leads to an underestimation of the simulated SW radiative heating compared to ORACLES data. ALADIN-Climate simulates a positive (monthly mean) SW DRE of about <span class="inline-formula">+6</span>&thinsp;W&thinsp;m<span class="inline-formula"><sup>−2</sup></span> over the SAO (20<span class="inline-formula"><sup>∘</sup></span>&thinsp;S–10<span class="inline-formula"><sup>∘</sup></span>&thinsp;N and 10<span class="inline-formula"><sup>∘</sup></span>&thinsp;W–20<span class="inline-formula"><sup>∘</sup></span>&thinsp;E) at the top of the atmosphere and in all-sky conditions. Over the<span id="page4964"/> continent, the presence of BBA is shown to significantly decrease the net surface SW flux, through direct and semi-direct effects, which is compensated by a decrease (monthly mean) in sensible heat fluxes (<span class="inline-formula">−25</span>&thinsp;W&thinsp;m<span class="inline-formula"><sup>−2</sup></span>) and surface land temperature (<span class="inline-formula">−1.5</span>&thinsp;<span class="inline-formula"><sup>∘</sup></span>C) over Angola, Zambia and the Democratic Republic of the Congo, notably. The surface cooling and the lower tropospheric heating decrease the continental planetary boundary layer height by about <span class="inline-formula">∼200</span>&thinsp;m.</p>
first_indexed 2024-12-11T14:33:21Z
format Article
id doaj.art-6f7388abd6a740e8a7f2619f03686d2c
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-11T14:33:21Z
publishDate 2019-04-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-6f7388abd6a740e8a7f2619f03686d2c2022-12-22T01:02:18ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-04-01194963499010.5194/acp-19-4963-2019Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experimentsM. Mallet0P. Nabat1P. Zuidema2J. Redemann3A. M. Sayer4A. M. Sayer5M. Stengel6S. Schmidt7S. Cochrane8S. Burton9R. Ferrare10K. Meyer11P. Saide12H. Jethva13H. Jethva14O. Torres15R. Wood16D. Saint Martin17R. Roehrig18C. Hsu19P. Formenti20Centre National de Recherches Météorologiques, UMR3589, Météo-France-CNRS, Toulouse, FranceCentre National de Recherches Météorologiques, UMR3589, Météo-France-CNRS, Toulouse, FranceRosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USAUniversity of Oklahoma, Norman, OK, USAUniversities Space Research Association, Columbia, MD, USANASA Goddard Space Flight Center, Greenbelt, MD, USADeutscher Wetterdienst (DWD), Offenbach, GermanyLaboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USALaboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USANASA Langley Research Center, Hampton, VA, USANASA Langley Research Center, Hampton, VA, USANASA Goddard Space Flight Center, Greenbelt, MD, USADepartment of Atmospheric and Oceanic Sciences (AOS), University of California, Los Angeles (UCLA), Los Angeles, CA, USAUniversities Space Research Association, Columbia, MD, USANASA Goddard Space Flight Center, Greenbelt, MD, USANASA Goddard Space Flight Center, Greenbelt, MD, USADepartment of Atmospheric Sciences, University of Washington, Seattle, WA, USACentre National de Recherches Météorologiques, UMR3589, Météo-France-CNRS, Toulouse, FranceCentre National de Recherches Météorologiques, UMR3589, Météo-France-CNRS, Toulouse, FranceNASA Goddard Space Flight Center, Greenbelt, MD, USALaboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, Paris, France<p>Estimates of the direct radiative effect (DRE) from absorbing smoke aerosols over the southeast Atlantic Ocean (SAO) require simulation of the microphysical and optical properties of stratocumulus clouds as well as of the altitude and shortwave (SW) optical properties of biomass burning aerosols (BBAs). In this study, we take advantage of the large number of observations acquired during the ObseRvations of Aerosols above Clouds and their intEractionS (ORACLES-2016) and Layered Atlantic Smoke Interactions with Clouds (LASIC) projects during September 2016 and compare them with datasets from the ALADIN-Climate (Aire Limitée Adaptation dynamique Développement InterNational) regional model. The model provides a good representation of the liquid water path but the low cloud fraction is underestimated compared to satellite data. The modeled total-column smoke aerosol optical depth (AOD) and above-cloud AOD are consistent (<span class="inline-formula">∼0.7</span> over continental sources and <span class="inline-formula">∼0.3</span> over the SAO at 550&thinsp;nm) with the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2), Ozone Monitoring Instrument (OMI) or Moderate Resolution Imaging Spectroradiometer (MODIS) data. The simulations indicate smoke transport over the SAO occurs mainly between 2 and 4&thinsp;km, consistent with surface and aircraft lidar observations. The BBA single scattering albedo is slightly overestimated compared to the Aerosol Robotic Network (AERONET) and more significantly when compared to Ascension Island surface observations. The difference could be due to the absence of internal mixing treatment in the ALADIN-Climate model. The SSA overestimate leads to an underestimation of the simulated SW radiative heating compared to ORACLES data. ALADIN-Climate simulates a positive (monthly mean) SW DRE of about <span class="inline-formula">+6</span>&thinsp;W&thinsp;m<span class="inline-formula"><sup>−2</sup></span> over the SAO (20<span class="inline-formula"><sup>∘</sup></span>&thinsp;S–10<span class="inline-formula"><sup>∘</sup></span>&thinsp;N and 10<span class="inline-formula"><sup>∘</sup></span>&thinsp;W–20<span class="inline-formula"><sup>∘</sup></span>&thinsp;E) at the top of the atmosphere and in all-sky conditions. Over the<span id="page4964"/> continent, the presence of BBA is shown to significantly decrease the net surface SW flux, through direct and semi-direct effects, which is compensated by a decrease (monthly mean) in sensible heat fluxes (<span class="inline-formula">−25</span>&thinsp;W&thinsp;m<span class="inline-formula"><sup>−2</sup></span>) and surface land temperature (<span class="inline-formula">−1.5</span>&thinsp;<span class="inline-formula"><sup>∘</sup></span>C) over Angola, Zambia and the Democratic Republic of the Congo, notably. The surface cooling and the lower tropospheric heating decrease the continental planetary boundary layer height by about <span class="inline-formula">∼200</span>&thinsp;m.</p>https://www.atmos-chem-phys.net/19/4963/2019/acp-19-4963-2019.pdf
spellingShingle M. Mallet
P. Nabat
P. Zuidema
J. Redemann
A. M. Sayer
A. M. Sayer
M. Stengel
S. Schmidt
S. Cochrane
S. Burton
R. Ferrare
K. Meyer
P. Saide
H. Jethva
H. Jethva
O. Torres
R. Wood
D. Saint Martin
R. Roehrig
C. Hsu
P. Formenti
Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments
Atmospheric Chemistry and Physics
title Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments
title_full Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments
title_fullStr Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments
title_full_unstemmed Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments
title_short Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments
title_sort simulation of the transport vertical distribution optical properties and radiative impact of smoke aerosols with the aladin regional climate model during the oracles 2016 and lasic experiments
url https://www.atmos-chem-phys.net/19/4963/2019/acp-19-4963-2019.pdf
work_keys_str_mv AT mmallet simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT pnabat simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT pzuidema simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT jredemann simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT amsayer simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT amsayer simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT mstengel simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT sschmidt simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT scochrane simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT sburton simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT rferrare simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT kmeyer simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT psaide simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT hjethva simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT hjethva simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT otorres simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT rwood simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT dsaintmartin simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT rroehrig simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT chsu simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments
AT pformenti simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments