Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments
<p>Estimates of the direct radiative effect (DRE) from absorbing smoke aerosols over the southeast Atlantic Ocean (SAO) require simulation of the microphysical and optical properties of stratocumulus clouds as well as of the altitude and shortwave (SW) optical properties of biomass burning aer...
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-04-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/19/4963/2019/acp-19-4963-2019.pdf |
_version_ | 1828771868035776512 |
---|---|
author | M. Mallet P. Nabat P. Zuidema J. Redemann A. M. Sayer A. M. Sayer M. Stengel S. Schmidt S. Cochrane S. Burton R. Ferrare K. Meyer P. Saide H. Jethva H. Jethva O. Torres R. Wood D. Saint Martin R. Roehrig C. Hsu P. Formenti |
author_facet | M. Mallet P. Nabat P. Zuidema J. Redemann A. M. Sayer A. M. Sayer M. Stengel S. Schmidt S. Cochrane S. Burton R. Ferrare K. Meyer P. Saide H. Jethva H. Jethva O. Torres R. Wood D. Saint Martin R. Roehrig C. Hsu P. Formenti |
author_sort | M. Mallet |
collection | DOAJ |
description | <p>Estimates of the direct radiative effect (DRE) from absorbing smoke aerosols
over the southeast Atlantic Ocean (SAO) require simulation of the
microphysical and optical properties of stratocumulus clouds as well as of
the altitude and shortwave (SW) optical properties of biomass burning
aerosols (BBAs). In this study, we take advantage of the large number of
observations acquired during the ObseRvations of Aerosols above Clouds and their
intEractionS (ORACLES-2016) and Layered Atlantic Smoke
Interactions with Clouds (LASIC) projects during
September 2016 and compare them with datasets from the ALADIN-Climate
(Aire Limitée Adaptation dynamique Développement
InterNational) regional model. The model provides a good representation of the liquid water
path but the low cloud fraction is underestimated compared to satellite
data. The modeled total-column smoke aerosol optical depth (AOD) and above-cloud
AOD are consistent (<span class="inline-formula">∼0.7</span> over continental sources and
<span class="inline-formula">∼0.3</span> over the SAO at 550 nm) with the Modern-Era Retrospective analysis for
Research and Applications version 2 (MERRA-2), Ozone Monitoring Instrument (OMI)
or Moderate Resolution Imaging Spectroradiometer (MODIS) data. The
simulations indicate smoke transport over the SAO occurs mainly between 2 and 4 km,
consistent with surface and aircraft lidar observations. The BBA single
scattering albedo is slightly overestimated compared to the Aerosol Robotic
Network (AERONET) and more significantly when compared to Ascension Island
surface observations. The difference could be due to the absence of internal
mixing treatment in the ALADIN-Climate model. The SSA overestimate leads to
an underestimation of the simulated SW radiative heating compared to ORACLES
data. ALADIN-Climate simulates a positive (monthly mean) SW DRE of about
<span class="inline-formula">+6</span> W m<span class="inline-formula"><sup>−2</sup></span> over the SAO (20<span class="inline-formula"><sup>∘</sup></span> S–10<span class="inline-formula"><sup>∘</sup></span> N and
10<span class="inline-formula"><sup>∘</sup></span> W–20<span class="inline-formula"><sup>∘</sup></span> E) at the top of the atmosphere and in all-sky
conditions. Over the<span id="page4964"/> continent, the presence of BBA is shown to significantly
decrease the net surface SW flux, through direct and semi-direct effects,
which is compensated by a decrease (monthly mean) in sensible heat fluxes
(<span class="inline-formula">−25</span> W m<span class="inline-formula"><sup>−2</sup></span>) and surface land temperature (<span class="inline-formula">−1.5</span> <span class="inline-formula"><sup>∘</sup></span>C) over
Angola, Zambia and the Democratic Republic of the Congo, notably. The surface
cooling and the lower tropospheric heating decrease the continental planetary
boundary layer height by about <span class="inline-formula">∼200</span> m.</p> |
first_indexed | 2024-12-11T14:33:21Z |
format | Article |
id | doaj.art-6f7388abd6a740e8a7f2619f03686d2c |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-11T14:33:21Z |
publishDate | 2019-04-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-6f7388abd6a740e8a7f2619f03686d2c2022-12-22T01:02:18ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-04-01194963499010.5194/acp-19-4963-2019Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experimentsM. Mallet0P. Nabat1P. Zuidema2J. Redemann3A. M. Sayer4A. M. Sayer5M. Stengel6S. Schmidt7S. Cochrane8S. Burton9R. Ferrare10K. Meyer11P. Saide12H. Jethva13H. Jethva14O. Torres15R. Wood16D. Saint Martin17R. Roehrig18C. Hsu19P. Formenti20Centre National de Recherches Météorologiques, UMR3589, Météo-France-CNRS, Toulouse, FranceCentre National de Recherches Météorologiques, UMR3589, Météo-France-CNRS, Toulouse, FranceRosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USAUniversity of Oklahoma, Norman, OK, USAUniversities Space Research Association, Columbia, MD, USANASA Goddard Space Flight Center, Greenbelt, MD, USADeutscher Wetterdienst (DWD), Offenbach, GermanyLaboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USALaboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USANASA Langley Research Center, Hampton, VA, USANASA Langley Research Center, Hampton, VA, USANASA Goddard Space Flight Center, Greenbelt, MD, USADepartment of Atmospheric and Oceanic Sciences (AOS), University of California, Los Angeles (UCLA), Los Angeles, CA, USAUniversities Space Research Association, Columbia, MD, USANASA Goddard Space Flight Center, Greenbelt, MD, USANASA Goddard Space Flight Center, Greenbelt, MD, USADepartment of Atmospheric Sciences, University of Washington, Seattle, WA, USACentre National de Recherches Météorologiques, UMR3589, Météo-France-CNRS, Toulouse, FranceCentre National de Recherches Météorologiques, UMR3589, Météo-France-CNRS, Toulouse, FranceNASA Goddard Space Flight Center, Greenbelt, MD, USALaboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, Paris, France<p>Estimates of the direct radiative effect (DRE) from absorbing smoke aerosols over the southeast Atlantic Ocean (SAO) require simulation of the microphysical and optical properties of stratocumulus clouds as well as of the altitude and shortwave (SW) optical properties of biomass burning aerosols (BBAs). In this study, we take advantage of the large number of observations acquired during the ObseRvations of Aerosols above Clouds and their intEractionS (ORACLES-2016) and Layered Atlantic Smoke Interactions with Clouds (LASIC) projects during September 2016 and compare them with datasets from the ALADIN-Climate (Aire Limitée Adaptation dynamique Développement InterNational) regional model. The model provides a good representation of the liquid water path but the low cloud fraction is underestimated compared to satellite data. The modeled total-column smoke aerosol optical depth (AOD) and above-cloud AOD are consistent (<span class="inline-formula">∼0.7</span> over continental sources and <span class="inline-formula">∼0.3</span> over the SAO at 550 nm) with the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2), Ozone Monitoring Instrument (OMI) or Moderate Resolution Imaging Spectroradiometer (MODIS) data. The simulations indicate smoke transport over the SAO occurs mainly between 2 and 4 km, consistent with surface and aircraft lidar observations. The BBA single scattering albedo is slightly overestimated compared to the Aerosol Robotic Network (AERONET) and more significantly when compared to Ascension Island surface observations. The difference could be due to the absence of internal mixing treatment in the ALADIN-Climate model. The SSA overestimate leads to an underestimation of the simulated SW radiative heating compared to ORACLES data. ALADIN-Climate simulates a positive (monthly mean) SW DRE of about <span class="inline-formula">+6</span> W m<span class="inline-formula"><sup>−2</sup></span> over the SAO (20<span class="inline-formula"><sup>∘</sup></span> S–10<span class="inline-formula"><sup>∘</sup></span> N and 10<span class="inline-formula"><sup>∘</sup></span> W–20<span class="inline-formula"><sup>∘</sup></span> E) at the top of the atmosphere and in all-sky conditions. Over the<span id="page4964"/> continent, the presence of BBA is shown to significantly decrease the net surface SW flux, through direct and semi-direct effects, which is compensated by a decrease (monthly mean) in sensible heat fluxes (<span class="inline-formula">−25</span> W m<span class="inline-formula"><sup>−2</sup></span>) and surface land temperature (<span class="inline-formula">−1.5</span> <span class="inline-formula"><sup>∘</sup></span>C) over Angola, Zambia and the Democratic Republic of the Congo, notably. The surface cooling and the lower tropospheric heating decrease the continental planetary boundary layer height by about <span class="inline-formula">∼200</span> m.</p>https://www.atmos-chem-phys.net/19/4963/2019/acp-19-4963-2019.pdf |
spellingShingle | M. Mallet P. Nabat P. Zuidema J. Redemann A. M. Sayer A. M. Sayer M. Stengel S. Schmidt S. Cochrane S. Burton R. Ferrare K. Meyer P. Saide H. Jethva H. Jethva O. Torres R. Wood D. Saint Martin R. Roehrig C. Hsu P. Formenti Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments Atmospheric Chemistry and Physics |
title | Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments |
title_full | Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments |
title_fullStr | Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments |
title_full_unstemmed | Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments |
title_short | Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments |
title_sort | simulation of the transport vertical distribution optical properties and radiative impact of smoke aerosols with the aladin regional climate model during the oracles 2016 and lasic experiments |
url | https://www.atmos-chem-phys.net/19/4963/2019/acp-19-4963-2019.pdf |
work_keys_str_mv | AT mmallet simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT pnabat simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT pzuidema simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT jredemann simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT amsayer simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT amsayer simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT mstengel simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT sschmidt simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT scochrane simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT sburton simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT rferrare simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT kmeyer simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT psaide simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT hjethva simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT hjethva simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT otorres simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT rwood simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT dsaintmartin simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT rroehrig simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT chsu simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments AT pformenti simulationofthetransportverticaldistributionopticalpropertiesandradiativeimpactofsmokeaerosolswiththealadinregionalclimatemodelduringtheoracles2016andlasicexperiments |